FLANDERS

KU LEUVEN Øeavise

DRIVING INNOVATION IN MANUFACTURING

Adhesive selection via an interactive, userfriendly system based on Symbolic Al

<u>Simon Vandevelde</u>, Jeroen Jordens, Bart Van Doninck, Maarten Witters, Joost Vennekens

彩

widely used in industry

https://www.dupont.co.uk/products/betaseal.html

https://www.livios.be/nl/bouwinformatie/ruwbouw/muren/verlijmen-versus-dun-metselen/

Not 1 adhesive suitable for all applications

Adhesive selection = crucial step in design process

Traditionally done by adhesive expert = time consuming + labor intensive process

Support tools

Websites

Personal assistance adhesive suppliers

- Requires much manual work
- Limited functionality

- Contact suppliers via contact form/phone
- Receive personal response

Expert systems

Meyler KL, Brescia JA. Design of a Computer Expert System for Adhesive Selection Using Artificial Intelligence Techniques. Army armament research development and engineering center Picatinny Arsenal...; 1993.

- Decision trees
- Selection tables
- Rule based expert systems
- Low maintainability + user unfriendly
- Limited expressiveness: complex relations not considered
- Limited number of adhesives / substrates

Time consuming

Only brand specific adhesives Takes couple of days

Our approach: Knowledge-Base System

Knowledge Base

- 1. Creation of knowledge Base:
 - Via 3 knowledge articulation workshops with 4-6 domain experts

- 21 adhesive + 11 substrate parameters
- 2. Integration in interactive consultant tool

Adhesive parameters available in the system			
Bond Strength	Elongation at Break	Lowest/Highest Performance Temp.	
Lowest/Highest Application Temp.	Humidity Resistance	Lowest/Highest Humidity	
Color	Potlife	Time Until Handling Strength	
Adhesion	Viscosity	Water Resistance	
UV Resistance	Chemical Resistance	Polymer Type	
Min/Max Gap Filling Capability	Adhesive Family		

Max Temperature
Water Vapor Absorption
Base Material
Organic Solvent Resistance
Transparency

Adhesive selector

Interactive adhesive selector tool with

- 21 adhesive families
- 55 specific adhesives
- 31 substrate families

	DP760
к	nc DP8407NS
	✓ DP609
	Adekit A 280 400 BK
	Adekit A 140 BK
	Betaseal 8000 1F n

	hesive Selector File - Edit View	✓ Reset Modelexpand ✓ Application ✓ Help ✓ Ad	hesive =(55)	Betaseal 8000 1F mp
Bond Strength Cat	Min Bond Strength = 🗍 🕅 MPa 🗿 🔮	Min Elongation At Break =	Max Elongation At Break =	-
 high strength moderate strength 	Flexibility =	Temperature Resistance =	Min Operation T =	
 ✓ × low strength ✓ × unknown strength 	Max Operation T =	Humidity Resistance	Chemical Resistance	Min Bond Strength = 🗍 MPa 💿 🕙
Min Viscosity = 💿 mPAs 🚱 🕙	Shock Resistant	 ✓ X good ✓ X moderate 	 ✓ ¥ good ✓ ¥ moderate 	Flexibility = very_flexible
Water Resistance	Max Viscosity = 👘 mPAs 🚱 🔮	 ✓ ¥ bad ✓ ¥ unknown 	✓ ¥ bad ✓ ¥ unknown	
✓ X good✓ X moderate	UV Resistance	Bond Sealing	Creep Resistant	Max Operation T = 80 C
 ✓ ¥ bad ✓ ¥ unknown 	V X good V X moderate	Load = 🚺 N 🚱 😍	Max Allowed Stress = 👘 MPa 🔕 🔮	Shock Resistant
	✓ ¥ bad ✓ ¥ unknown	Safety Factor = 1	delta Length = 🚺 mm 🚱 🔮	Water Resistance
Production				✓ 🗶 good
Min Application T =	Max Application T =	Min Application Humidity = 🛛 🕅 % 🚱 🕙	Max Application Humidity =	✓ 🗙 good ✓ 💥 moderate
Min Potlife = 👘 🕅 🏵	Time Till Handling Strength =	Max Time Till Handling Strength =	Max Time Till Full Strength = 💿 min 🚳 🔮	✓ 🗶 bad ✓ 🗶 unknown
Apply Pressure After Joining	Extraction Or Open Air	✓ 🗶 Activator	Max Curing T =	• •• •
Min Curing T = 💿 C 🗿 🔮	VV Source Available			

Adhesive selector

- In the interface, any of the parameters can be set
- The **consequences** are automatically derived and shown!
- The system can **explain** these consequences, increasing user-friendliness
- Tool is multi-purpose:
 - Find list of suitable adhesives
 - Find cheapest/strongest/most flexible adhesive
 - Verify suitability of pre-owned adhesive
 - Find a second substrate
 - > Explain *why* an adhesive is not suitable
 - ▶ ...

Bond Sealing
Max Operation T =
Vibration Dampening
Shock Resistant
Above choice is implied by the following choice(s):
Vibration Dampening
Laws
Vibration_Dampening() ⇔ Flexibility() = very_flexible
Shock_Resistant() ⇔ Flexibility() = very_flexible
V 🛪 good

Benchmarking

- Test industrial tool on industrial relevant case
- Compare resources + output adhesive expert with + without tool

Results

Adhesive expert

- 1. Reasons on possible adhesive families
- 2. Suppliers of industrial adhesives are contacted
- 3. Technical datasheets compared
- 4. Make final selection

Selection tool

- 1. Fill requirements in selection tool
- 2. IDPs propagation inference performed after each value
- 3. Make final selection

MMA: Plexus MA 560-1

MMA: Plexus MA 560-1

• Significant reduction in time to find adhesive

- Assumes significant large database of adhesives for selection tool
- Full market study not performed by adhesive expert

- Extend KB with more adhesives + substrates \rightarrow automatic datasheet parsing
- Validation of selector tool on more industrial relevant use cases
- Convert KB to cDMN, a novel representation method which aims at being userfriendly

Mir	nElongation	
U	Support	MinElongation
1	free	$0.5 \times deltaLength / BondThickness$
2	fixed	deltaLength / BondThickness

- Adhesive Selection knowledge was captured in FO(\cdot) KB
- IDP-Z3 as reasoning engine & Interactive Consultant as interface
- Adhesive selector is multi-purpose: knowledge can be re-used
- Tool is sufficiently performant
- Tests on industrial use case showed potential

Thank you!

More information:

- <u>s.vandevelde@kuleuven.be</u>
- jeroen.jordens@flandersmake.be
- www.IDP-Z3.be