
Leveraging the Power of IDP with the
Flexibility of DMN: a Multifunctional API

Simon Vandevelde?1,3, Vedavyas Etikala2,3, Jan Vanthienen2,3, and Joost
Vennekens1,3

1 KU Leuven, De Nayer Campus, Dept. of Computer Science
J.-P- De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
{s.vandevelde, joost.vennekens}@kuleuven.be

2 Leuven Institute for Research on Information Systems (LIRIS), KU Leuven
{vedavyas.etikala,jan.vanthienen}@kuleuven.be

3 Leuven.AI - KU Leuven Institute for AI, B-3000 Leuven, Belgium

Abstract. Decision Model and Notation (DMN) models are user-friendly
representations of decision logic. While the knowledge in the model could
be used for multiple purposes, current DMN tools typically only support
a single form of inference. We present DMN-IDPy, a novel Python API
that links DMN as a notation to the IDP system, a powerful reasoning
tool, allowing the knowledge in DMN models to be used to its fullest
potential. The flexibility of this approach allows us to build intelligent
tools based on DMN unlike any other execution engine.

Keywords: Decision Model and Notation · Knowledge Base Paradigm
· IDP · API · Python

1 Introduction

The Decision Model and Notation standard [9], designed by the Object Mod-
eling Group (OMG), is a user-friendly, table-based notation for modeling deci-
sion logic. Its main goals are to make decision knowledge readable by everyone
involved in the decision process (business people, IT experts), and to be ex-
ecutable. Since its start in 2015, DMN has quickly gained popularity in both
industry [4,12,8] and academia [5,1].

Typically, DMN is used to automate day-to-day business decisions. Most
DMN tools therefore focus on supporting the required functionalities for this
specific use.

However, we believe that more ambitious uses of DMN are also possible. In
particular, the knowledge that is contained in a DMN model could be used to
build knowledge-based AI systems, that can implement various sorts of intelligent
behaviour. Consider, for instance, a cobot tasked with assisting an operator in
product assembly. It seems likely that the domain knowledge that such a cobot

? This research received funding from the Flemish Government under the “Onderzoek-
sprogramma Artificiële Intelligentie (AI) Vlaanderen” programme.

2 S. Vandevelde et al.

would need can be expressed in DMN, and, moreover, doing so would allow
the domain knowledge to be written and maintained directly by the operators
themselves, instead of requiring programmers or knowledge engineers as middle
men.

To actually implement such a system, the functionality of typical DMN tools
does not suffice. For instance, the cobot would need to figure out which sensor
input is necessary for specific operations, and such functionality is typically not
available. In an effort to allow DMN models to be used in a more flexible way,
a translation from DMN to the FO(·) language was presented in [5]. FO(·) is
an extension of classical first-order logic, which serves as the input language for
the IDP Knowledge Base System [6]. Following the approach of [7], IDP allows
the same knowledge base to be (re-)used for different forms of logical inference,
facilitating the development of flexible knowledge-based tools. The work of [5]
allows the powerful logical inference algorithms of IDP to be applied to DMN
models as well. However, to build truly useful intelligent systems, this alone
does not suffice: it is also necessary to combine these different inference tasks in
a suitable way. Moreover, this should be done using the concepts and terminology
from the original DMN model (instead of those from the FO(·) theory that the
DMN model is translated to behind the scenes).

To make this possible, we present the DMN-IDPy API: a versatile Python
API that combines DMN as a notation with the IDP system as a reasoning
engine. It aims to deliver the building blocks required to unlock more powerful
and flexible uses for DMN models. In this way, the API facilitates the creation
of systems that exhibit intelligent behavior, based on the user-friendly structure
and format of DMN models.

This work is similar in spirit to previous work on the PyIDP API [15], which
exposes the functionality of IDP to Python programmers, allowing also the
knowledge base itself to be represented in a pythonic syntax, rather than the
usual syntax of FO(·). The difference to our work is that we now bring DMN
into the mix to allow the knowledge to be maintained by domain experts, rather
than Python programmers.

This paper is structured as follows. First, we elaborate on some background
in Section 2. Next, we go over all functionalities of our DMN execution API in
Section 3. Afterwards, Section 4 showcases a possible application of the API, in
the form of a naive chat bot. We also briefly touch on the concrete implemen-
tation of the API itself in Section 5. Lastly, we compare our implementation to
the current state-of-the-art in Section 6, and we conclude in Section 7.

2 Background

This section elaborates on the DMN standard, the current execution methods
supported by the state-of-the-art DMN tools and the IDP system.

PyDMN-API: Multifunctional API combining DMN and IDP 3

2.1 DMN

The Decision Model and Notation (DMN) standard provides a user-friendly no-
tation for (business) decision knowledge. It consists of two main components:
the Decision Requirements Diagram (DRD), and decision tables. The DRD is
a graph representing the decision flow throughout the DMN model. It shows a
graphical overview of which decision tables are present, how they connect, which
input variables are used, which data sources are needed, and more. Fig. 1a shows
an example of a DRD with three decision tables, as represented by the rectan-
gles, and four input variables, as represented by the ovals. The arrows between
them represents the flow of information, e.g., the value of BMI is defined by the
value of the inputs Weight and Length.

Risk Level Waist

BMI Level

BMI

Sex

Length

Weight

(a) DRD

BMI

U Weight Length BMI

1 — — Weight/(Length*Length)

BMI Level

U BMI BMILevel

1 < 18.5 Underweight

2 [18.5..25] Normal

3 (25..30] Overweight

4 > 30 Obese

Risk Level

U BMILevel Sex Waist RiskLevel

1 Normal — — Low

2 Underweight — — High

3 Overweight Male ≤ 102 Increased

4 Overweight Male > 102 High

5 Overweight Female ≤ 88 Increased

6 Overweight Female > 88 High

7 Obese Male ≤ 102 High

8 Obese Male > 102 Very High

9 Obese Female ≤ 88 High

10 Obese Female > 88 Very High

(b) Decision Tables

Fig. 1: Decision tables and DRD for the BMI running example.

The second main component consists of decision tables, as shown in Fig. 1b.
Every decision table contains one or more input variables and one or more output
variables, each corresponding to a column. A decision table defines the value of
the output variables in term of the value of the input variables. Each row of

4 S. Vandevelde et al.

the table corresponds to a decision rule. We say that a rule fires whenever the
actual value of the input variables match the values listed in its cells. The way in
which the inputs define the output depends on the hit policy of the table. This
hit policy can either be single hit (such as U(nique), F(irst), A(ny)) or multiple
hit (such as C(ollect), C+ and C<). If multiple rows fire at the same time, the
hit policy specifies how these rows are combined to determine the value of the
output variable.

The example DMN model shown in Fig. 1 consists of three tables in total,
defining BMI, BMI Level and Risk Level. For these decisions, it uses four different
input parameters: the weight, length, sex and waist size of a person. In this
example, all tables have the U hit policy, meaning that only a single row can fire
per table. E.g., if the value of BMI = 23, the second row in the BMI Level table
fires, thus assigning Normal to the decision variable BMILevel. A cell containing
“—” signifies that the value of this variable does not matter. For instance, if the
BMI Level is underweight, the Risk Level is always high, regardless of sex and
waist size.

2.2 Execution Methods

Since the introduction of DMN by OMG, software companies such as Camunda
[3], OpenRules [10] and Signavio [11] offer decision modeling software based on
this standard. Besides assisting the user in modeling and verifying decisions,
some of them also provide execution mechanisms for the models.

Such execution goes back to Decision Table Solvers [14]. Practically, most of
these tools all support the same execution method: the bottom-to-top approach.
This execution method requires the user to input a value for every input variable
present in the model, after which the execution engine decides the value of all
other variables. For example, supplying a value for Weight, Length, Waist and
Sex to find the value of Risk Level. While this is considered the standard usage
of a DMN model, some tools also support additional execution methods.

One such method is reasoning on sub-decisions: instead of evaluating every
decision table in a model, it is sometimes preferable to evaluate only a specific
subset of decisions. If we are only interested in the BMI Level, for example, we
do not need to evaluate the Risk Level table. The advantage of reasoning on
sub-decisions is that not all input variables must be known (i.e. Waist and Sex
are irrelevant as long as we do not need to know the RiskLevel). Examples of
tools capable of this execution method are Camunda and OpenRules, both of
which can evaluate a decision table in isolation. By reasoning on a single table
at a time, they allow only evaluating the tables necessary for a sub-decision.

Another alternative execution method is the “wildcard” mode, such as the
one provided by Camunda and Signavio, in which users can evaluate a decision
model with partial input values. For example, if the value of Sex is unknown, a
wildcard value can be used instead, in which case the engine returns a set of all
possible output values.

PyDMN-API: Multifunctional API combining DMN and IDP 5

2.3 IDP

The IDP system [6] is a powerful and flexible reasoning engine. As an imple-
mentation of the Knowledge Base Paradigm [7], it creates a clear distinction
between knowledge and its use. Concretely, knowledge is stored in a so-called
knowledge base (KB), written in an extended version of First-Order Logic (FO),
called FO(·). As an example, (1) shows a possible FO(·) representation of the
BMI Level table shown in Fig. 1b in the form of a conjunction of implications,
as defined by the semantics of Calvanese et al. [2].

(BMI < 18.5 ⇒BMILevel = Underweight)

∧(18.5 ≤ BMI ≤ 25 ⇒BMILevel = Normal)

∧(25 < BMI ≤ 30 ⇒BMILevel = Overweight)

∧(30 < BMI ⇒BMILevel = Obese)

(1)

In FO(·), we represent each DMN variable by a constant c, with for every
such constant a list of possible values poss(c). A total assignment assigns to
every constant precisely one value cI ∈ poss(c). A partial assignment assigns to
every constant a non-empty subset cI ⊆ poss(c) of its possible values poss(c).

To reason on the knowledge in a KB, the IDP engine supports various in-
ference tasks; three of these are used in this paper. To start, there is the model
expansion task: given an assignment of values to some of the variables, compute
an assignment to the other variables such that the knowledge base is satisfied.
If the given variables are precisely the “input” variables of the model, this boils
down to the standard “bottom-to-top” execution. However, we can also assign
a value to a decision variable and then compute corrsponding values for the
input variables. Propagation is the second inference task implemented in our
API. Here, after assigning values to some variables, the IDP system generates
(in-)equalities of the form cθv with c a variable, v a value from poss(c), and θ a
comparison operator, that are now implied by the KB. E.g., if we add BMI < 30
to (1), propagation will automatically derive that BMILevel 6= Obese. The final
inference task used in this work is optimization, which allows us to find a solution
with the lowest/highest value for any given term.

Note that by using these inference tasks, we can do more than just bottom-
to-top calculation. Indeed, the IDP system has no sense of direction: any variable
can be used as “input” by assigning it a value. In this way, we can also use DMN
tables “backwards”, by going from the output variable to the input variables.

3 API features

This section aims at showcasing the features of the DMN-IDPy API. For every
feature, we briefly mention what it is, why it is important and we show a short
code snippet to show it in action.

6 S. Vandevelde et al.

3.1 Bottom-Up Decision Calculation

Our API can be used to provide the same “bottom-to-top” functionality as
standard DMN tools. In the example shown in Fig. 1, this corresponds to setting
the values for Weight, Length, Sex and Waist in order to then calculate the
decisions in the following order: BMI → BMILevel → RiskLevel.

spec = DMN(’bmi.dmn’)
spec.set value(’weight’, 74)
spec.set value(’length’, 1.79)
spec.set value(’sex’, ’Male’)
spec.set value(’waist’, 90)

→

>>> spec.model expand(1)
Model 1
==========
riskLevel:={−>Low}
waist:={−>104}
BMILevel:={−>Normal}
bmi:={−>23.09540900720951}
sex:={−>Male}
weight:={−>74}
length:={−>1.79}

3.2 Reasoning with Incomplete Information

Instead of requiring all input variables to have values assigned to them in order
to run the execution, we also allow reasoning on DMN models with incomplete
information. This functionality can e.g. be used to calculate the value of one or
more sub-decisions without requiring the values of all input variables, thereby
reducing the number of necessary operations. For example, if we are merely
interested in the value of BMILevel, we should be able to perform this decision
using only Weight and Length as inputs.

spec.set value(’Weight’, 74)
spec.set value(’Length’, 1.79)
spec.propagate()

→ >>> spec.value of(’BMI’)
23.09540900720951

By supporting reasoning with incomplete information, every DMN model
that consists of more than one table can directly and efficiently be used for
multiple purposes by reasoning on sub-decision trees.

3.3 Relevance

One of the goals of our API is to allow generic tools to be built, by avoiding the
need to hard-code which variables must be assigned a value and in which order
this should happen. To this end, it allows to query on the fly which variables are
relevant for making a certain decision. For example, because BMI is defined by
Length and Weight, these latter two variables should both be known in order to
decide the value of BMI. By implementing this functionality in the API, tools
can be built with a more generic nature.

PyDMN-API: Multifunctional API combining DMN and IDP 7

Note that by “inputs” we do not only mean the inputs of a decision table,
but rather all upstream variables needed for a decision to be made. For example,
while the BMI Level table only has one input variable, that variable in turn has
two input variables. So, in reality, there are three dependencies for BMI Level,
but at two different levels of the DRD. In the API, we show the number of
node hops necessary to reach the variable to clearly denote this difference. This
information is generated from the DMN file, without making use of the IDP
system.

>>> spec.dependencies of(’BMILevel’)
{’BMI’: 0, ’Weight’: 1, ’Length’: 1}

>>> spec.dependencies of(’BMILevel’)
{’BMILevel’: 0, ’BMI’: 1, ’Weight’: 2, ’Length’: 2,
’Sex’: 0, ’Waist’: 0}

As mentioned in Section 3.2, this can help optimize the required operations
needed to decide a variable’s value.

3.4 Multidirectional Reasoning

In our goal to get as much use out of a single DMN model as possible, the
ability to reason on decisions in any direction is the functionality that results in
the most mileage. Instead of only calculating in the direction of the arrows in
the DRD (bottom-to-top), we can reason in the other direction as well. Among
other things, it then becomes possible to calculate the input variables of the
model based on the top-level decision.

To do this, the API supports directly assigning values to the decision vari-
ables. For example, if the value for BMI is already known beforehand, we can
directly assign that value to the decision variable and use it to derive the value
of BMI Level.

spec.set value(’BMI’, 31)
spec.propagate()

→ >>> spec.value of(’BMILevel’)
Obese

For an example of multidirectional reasoning, consider a person who just
used the model to calculate that they are overweight, and now wants to query
what their weight should be in order to reach a BMI of 25. By entering their
length and their desired BMI value, the tool can calculate the weight required
to reach their goal.

spec.set value(’BMI’, ’25’)
spec.set value(’Length’, 1.79)
spec.propagate()

→ >>> spec.value of(’Weight’)
80.1025

Here, only a single value for Weight remains, because we set both BMI and
Length. However, if we only set BMI, multiple values for Weight (and Length)

8 S. Vandevelde et al.

are still possible, and no equality Weight = x can be propagated. Indeed, instead
of a single solution, we now have a solution space.

There are multiple ways to traverse this solution space in order to find a
single solution. Assigning values to more variables will decrease the size of the
space, possibly up until the point where there is only one solution left. If there
are no variables left and there are still multiple solutions possible, we can gen-
erate solutions via IDP’s model expansion inference (as demonstrated in the
example in Section 3.1). Alternatively, we can search for the solution with the
maximal/minimal value for a specific variable, as further explained in the Sec-
tion 3.7.

3.5 Known variables

Because of the API’s interactive approach, where any variable can be assigned a
value at any time, it is important to be able to keep track of which variables are
known, i.e., have been assigned a value either by the user or by the reasoning
engine via propagation. Consider for instance a case where a user has calculated
their BMI level as demonstrated in Section 3.2, by entering their length and
weight. If they want to calculate their risk level afterwards, they should only
have to enter their sex and waist, as that is the only information that is still
missing for this decision.

spec.set value(’Length’, 1.79)
spec.set value(’Weight’, 79)
spec.propagate()

→
>>> spec.is certain(’BMI’)
True
>>> spec.is certain(’Sex’)
False

3.6 Variable type and values

Every variable in a DMN model has a data type, such as Int, Float, String or
other. Intuitively, these denote the type of data that a variable represents. To
avoid errors such as assigning a numerical value to a variable of data type String,
the API allows querying a variable’s type via type of.

String is a special case of data type: where Int, Float, etc are considered
to have infinite ranges, String is often limited to a predefined list of possible
values. Indeed, it makes sense that only those values that appear in a table can
be assigned to a variable. E.g., in the BMI example the variable Sex can only
be assigned values Male or Female. To prevent assigning impossible values to a
string variable, the API can give a list of all possible values by either returning
the variable’s predefined list, or, if no list was predefined, by returning a list of
all string values which appear at least once for that variable.

>>> spec.type of(’Sex’)
String
>>> spec.possible values of(’Sex’)
[’Male’, ’Female’]

PyDMN-API: Multifunctional API combining DMN and IDP 9

3.7 Optimization

Optimization allows us to find the solution with the highest, or the lowest value
for any given numerical variable. Consider a patient that has just entered their
weight and length to find out that they have an Overweight BMI Level. A logical
next question would be: “What should my target weight be if I want to have
a normal BMI Level?”. To answer this, they can enter their length and set the
value of BMI Level to Normal. If they then maximize the value of Weight, the
system will calculate the maximum weight that still results in a normal BMI
Level.

>>> spec.set value(’Length’, 1.79)
>>> spec.set value(’BMILevel’, ’Normal’)
>>> spec.maximize(’Weight’)
Model 1
==========
RiskLevel:={−>Low}
Waist:={−>104}
BMILevel:={−>Normal}
BMI:={−>25}
Sex:={−>Male}
Weight:={−>80.1025}
Length:={−>1.79}

4 Application Example

To truly showcase the power of combining DMN as a modelling tool and IDP as
a reasoning engine, this section sketches a possible implementation for a naive
chat bot, implemented in less than 25 lines of Python. Its main goal is to allow
users to calculate any of the intermediary or top-level variables of a DMN model.
In order to achieve this, the bot goes through a few steps. First, it fetches the
list of variables and asks the user which variable should be calculated.

spec = DMN(sys.argv[1], auto propagate=True)
vars = spec.get outputs() + spec.get intermediary()
req var = input(’Which variable to calculate? {}\n>’.format(variables))

Next, the program finds out which input variables should be known in order
to make this calculation. Input variables without any effect on the value of the
requested variable are not included.

deps = spec.dependencies of(req var)
missing vars = [x for x in deps if x in spec.get inputs()]
print(”\nThe following variables are still unknown:”)
print(missing vars)

Finally, it loops over every unknown variable and queries the user for its
value. Important here is that we ask a different question, based on the data

10 S. Vandevelde et al.

type of the variable. Indeed, the user should be aware of the data type of the
variable that is being queried. If the program requests the value of a String-based
variable, it should also supply the user the list of possible values. Similarly for
numerical variables, the user should be notified if the variable is an integer or a
float.

for var in missing vars:
Ask for the variable’s value. Based on var type, ask different question.
var type = spec.type of(var)
if var type in [’Real’, ’Int’]:

msg = ”Value for {} ({}) unknown.\n>”.format(var, var type)
else:

pos vals = spec.possible values of(var)
msg = ”Value for {} unknown.\n”\

”Possible values: [{}]\n>”.format(var, pos vals)
value = input(msg)
spec.set value(var, value)

if spec.is known(req var):
break

req var val = spec.value of(req var)
print(’Calculated value for {}:\n{}’.format(req var, req var val))

Note that at the end of every loop cycle, the program checks whether the
variable is known yet. While this might not make much sense at first, because
the program specifically fetched the list of necessary inputs for the decision,
there are cases where not all inputs might be necessary. Consider for example
the decision table for RiskLevel. Here, if the values for Weight and Length are
queried first and they lead to a BMI Level that is neither overweight nor obese,
then the values of Sex and Waist will have no impact on this decision.

>>> python bot.py bmi.dmn
Which variable to calculate? [’RiskLevel’, ’BMILevel’, ’BMI’]
> Risk Level
The following variables are still unknown:
[’Weight’, ’Length’, ’Sex’, ’Waist’]
Value for Weight (Real) unknown.
> 79
Value for Length (Real) unknown.
> 1.79
Calculated value for Risk Level:
Low

While this implementation uses the BMI example, it is not limited to it.
Indeed, by supplying a different DMN model when invoking the program, the
chat bot can be used for different purposes. For example, after inserting a DMN
model designed to calculate personal taxes, the chat bot is capable of reasoning
in that problem field without having to change any code.

PyDMN-API: Multifunctional API combining DMN and IDP 11

5 Implementation

This section briefly elaborates on the implementation of the DMN-IDPy API.
To transform DMN models to input for the IDP system, it uses a tool developed
in [1,13]. This tool accepts DMN models that are either in XML format (as
specified by the DMN standard), or in the form of an Excel spreadsheet.

When using the API, a few internal steps are performed. To begin, as soon
as a specification is entered, it is translated internally into the FO(·) format of
the IDP system. This translation is done based on the decision table semantics
as defined by Calvanese et al. [2], i.e., every table is represented by a conjunction
of material implications. To run the IDP system, we use the idp-engine4 Python
package.

Whenever a variable is assigned a value, the underlying IDP specification is
updated to represent this change. If the user invokes the propagation method,
the API immediately runs IDP’s propagation inference and updates the values
of the other variables accordingly. Similarly, if they invoke the model expansion
function, the API triggers IDP’s model expansion inference.

The PyDMN-API library is available to download via the Python Package
Index5. Furthermore, there is also a practical usage guide for the API available
online6. Note that the API does not (yet) support the full DMN standard. Cur-
rently, it is capable of reasoning on tables with the following hit policies: U, F,
A, C+, C< and C>. It supports the Int, Float, Boolean and String data types,
but not e.g. the Date type. There is also no support for boxed expressions.

6 Comparison

To the best of our knowledge, there is no other approach that offers such a flexible
yet powerful use of DMN models. While there exist tools that support more than
exclusively the bottom-to-top calculation, none are capable of performing all
features discussed in this work. Table 1 shows a comparison of the functionalities
of DMN-IDPy, the OpenRules API and the Camunda API.

As expected, all compared APIs support the bottom-to-top execution. Ad-
ditionally, they all also support reasoning on incomplete information, but only
up to a varying degree. Both OpenRules and Camunda are capable of using in-
complete information by reasoning on sub-decisions, as they allow the evaluation
of a single decision table isolated from the rest of the DMN model. Thus, it is
possible to e.g. use the Risk Level model to only calculate a patient’s BMI, as
discussed in the example in Section 3.2. However, as the API’s only allow rea-
soning on either the entire model or a single specific table, attempting to reason
on a sub-decision consisting of multiple tables (e.g. BMI followed by BMILevel)
requires quite a bit of extra overhead: for each table, we would need to (a) manu-
ally supply the inputs, (b) evaluate, and (c) extract the outputs to use as inputs

4 https://pypi.org/project/idp-engine/
5 https://pypi.org/project/cdmn/
6 https://cdmn.readthedocs.io/en/latest/DMN guide.html

https://pypi.org/project/idp-engine/
https://pypi.org/project/cdmn/
https://cdmn.readthedocs.io/en/latest/DMN_guide.html

12 S. Vandevelde et al.

for the next table. In our API, no such workarounds are needed, as it suffices to
enter all input values followed by calling the propagation inference. As such, the
process of using sub-decisions with DMN-IDPy is much more streamlined.

The wildcard mode, as featured in e.g. Camunda, is possible in DMN-IDPy
by leveraging its ability to reason on incomplete information. After entering a
partial set of input values, we can generate all remaining solutions using the
model expansion inference.

Neither OpenRules nor Camunda support multidirectional reasoning or op-
timization.

DMN-IDPy OpenRules Camunda

Bottom-to-top X X X
Incomplete Information X o o
Wildcard mode X X
Multidirectional Reasoning X
Optimization X

Table 1: Comparison between functionalities of DMN-IDPy, and state-of-the-art
DMN execution engines. (X = full support, o = partial support)

The main downside of our approach is the efficiency of the reasoning en-
gine itself. Where other engines have specific optimized algorithms to perform
the bottom-to-top calculation, we use a general purpose reasoning engine. As
such, our calculation times will often be a magnitude higher compared to the
other state-of-the-art engines. However, we feel that we make up for it with the
increased flexibility that the API offers.

7 Conclusion and Future Work

While DMN models are most often used for bottom-to-top calculations, they can
be used in many more scenarios. For this to be possible however, DMN needs
to be supported by a flexible reasoning tool. In this paper, we present a Python
API that enables the IDP reasoning system as an execution engine for DMN.
This way, it provides the building blocks necessary to construct intelligent tools
based on user-friendly DMN models. The main additions of the API are:

– Support for reasoning in any direction (e.g. going in the other direction of
the DRD);

– Support for reasoning on incomplete data (allowing for sub-decision calcu-
lations);

– Addition of the optimization of variable values.

In order to showcase DMN-IDPy in action, we created a naive implementation
of a chat bot in under 20 lines of Python code. The implementation is generic in

PyDMN-API: Multifunctional API combining DMN and IDP 13

the sense that it can be used with any DMN model, without having to change a
line of code.

In future work, we will look into extending the API to support more of
IDP’s inference tasks. Moreover, we will also develop a more extensive, real-life
application based on our API to further research its usefulness in a more realistic
setting.

References

1. Aerts, B., Vandevelde, S., Vennekens, J.: Tackling the DMN challenges with cDMN:
A tight integration of DMN and constraint reasoning. In: Rules and Reasoning,
pp. 23–38. Lecture Notes in Computer Science, Springer International Publishing,
Cham (2020)

2. Calvanese, D., Dumas, M., Laurson, U., Maggi, F.M., Montali, M., Teinemaa, I.:
Semantics, analysis and simplification of DMN decision tables. Information systems
(Oxford) 78, 112–125 (2018)

3. Camunda Services GmbH: Camunda DMN Decision Engine. https://camunda.
com/ (2013 – 2021)

4. Car, N.J.: Using decision models to enable better irrigation decision
support systems. Computers and Electronics in Agriculture 152, 290–
301 (2018). https://doi.org/https://doi.org/10.1016/j.compag.2018.07.024, http:
//www.sciencedirect.com/science/article/pii/S0168169917313595

5. Dasseville, I., Janssens, L., Janssens, G., Vanthienen, J., Denecker, M.: Combining
DMN and the knowledge base paradigm for flexible decision enactment. Supple-
mentary Proceedings of the RuleML 2016 Challenge, vol. 1620. CEUR-WS.org
(2016)

6. De Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G., Denecker, M.: Predicate
logic as a modeling language: The IDP system. In: Declarative Logic Programming:
Theory, Systems, and Applications, pp. 279–329. ACM Books (2018), $$Uhttps:
//doi.org/10.1145/3191315

7. Denecker, M., Vennekens, J.: Building a knowledge base system for an integration
of logic programming and classical logic. vol. 5366, pp. 71–76. Garcia de la Banda,
Maria, Springer (2008), $$Uhttps://doi.org/10.1007/978-3-540-89982-2

8. Hasic, F., Vanthienen, J.: From decision knowledge to e-government expert sys-
tems: the case of income taxation for foreign artists in belgium. Knowledge and
information systems 62(5), 2011–2028 (2020)

9. Object Modelling Group: Decision model and notation (2021), http://www.omg.
org/spec/DMN/

10. OpenRules Inc.: OpenRules Decision Manager. https://openrules.com (2003 –
2021)

11. Signavio GmbH: Signavio Process Manager. https://www.signavio.com/ (2009 –
2021)

12. Sooter, L.J., Hasley, S., Lario, R., Rubin, K.S., Hasić, F.: Modeling a clinical
pathway for contraception. Applied clinical informatics 10(5), 935—943 (October
2019). https://doi.org/10.1055/s-0039-3400749

13. Vandevelde, S., Vennekens, J.: A multifunctional, interactive DMN decision mod-
elling tool (2020)

14. Vanthienen, J., Dries, E.: Illustration of a decision table tool for specifying and im-
plementing knowledge based systems. Int. J. Artif. Intell. Tools 3, 267–288 (1994)

https://camunda.com/
https://camunda.com/
https://doi.org/https://doi.org/10.1016/j.compag.2018.07.024
http://www.sciencedirect.com/science/article/pii/S0168169917313595
http://www.sciencedirect.com/science/article/pii/S0168169917313595
$$Uhttps://doi.org/10.1145/3191315
$$Uhttps://doi.org/10.1145/3191315
$$Uhttps://doi.org/10.1007/978-3-540-89982-2
http://www.omg.org/spec/DMN/
http://www.omg.org/spec/DMN/
https://openrules.com
https://www.signavio.com/
https://doi.org/10.1055/s-0039-3400749

14 S. Vandevelde et al.

15. Vennekens, J.: Lowering the learning curve for declarative programming: A python
API for the IDP system. PRACTICAL ASPECTS OF DECLARATIVE LAN-
GUAGES (PADL 2017), vol. 10137, pp. 86–102. Springer Verlag (2017)

	Leveraging the Power of IDP with the Flexibility of DMN: a Multifunctional API

