
Simon Vandevelde, Vedavyas Etikala,
Jan Vanthienen, Joost Vennekens
KU Leuven — EAVISE, LIRIS
13 September 2021

Leveraging the Power of
IDP with the Flexibility of

DMN: aMultifunctional API
RuleML + RR 2021



OUTLINE

1. DMN

2. IDP

3. DMN-IDPy API

4. Application example

1



1 DMN



WHAT IS DMN?

Decision Model and Notation
• Notation standard for decision logic
• Published by OMG Group
• Table-based representation of decisions
• Decision Requirements Diagram
• Main focus: readability, traceability

DMN 3



WHAT IS DMN?

Decision Requirements Diagram

• Represents structure of
decision model
• Inputs, decision tables,

knowledge sources, . . .

Risk Level Waist

BMI Level

BMI

Sex

Length

Weight

DMN 4



WHAT IS DMN?

Decision Tables

• Decide outputs (blue) based
on inputs (green)
• Rows represent rules
• Columns represent values
• Behaviour defined by Hit Policy
• (S-)Feel in inputs

BMI Level
U BMI BMILevel
1 < 18.5 Underweight
2 [18.5..25] Normal
3 (25..30] Overweight
4 > 30 Obese

DMN 5



WHAT IS DMN?

(Simple) Friendly Enough Expression Language
• Simple values
• Lists of values
• Numerical comparisons
• Ranges of values
• Calculations

DMN 6



FULL DMN EXAMPLE

Risk Level Waist

BMI Level

BMI

Sex

Length

Weight

Risk Level
U BMILevel Sex Waist RiskLevel
1 Normal — — Low
2 Underweight — — High
3 Overweight Male ≤ 102 Increased
4 Overweight Male > 102 High
5 Overweight Female ≤ 88 Increased
6 Overweight Female > 88 High
7 Obese Male ≤ 102 High
8 Obese Male > 102 Very High
9 Obese Female ≤ 88 High

10 Obese Female > 88 Very High

BMI Level
U BMI BMILevel
1 < 18.5 Underweight
2 [18.5..25] Normal
3 (25..30] Overweight
4 > 30 Obese

BMI
U Weight Length BMI
1 — — Weight/(Length*Length)

DMN 7



CURRENT DMN EXECUTION

• the “standard” bottom-to-top
- Start at “bottom” inputs
- Evaluate table by table
- Finish at top-level variable

• reasoning on sub-decisions
• wildcard mode

Risk Level Waist

BMI Level

BMI

Sex

Length

Weight

DMN 8



CURRENT DMN EXECUTION

• the “standard” bottom-to-top
• reasoning on sub-decisions

- Evaluate only subset of decisions
- E.g. only calculate BMI
→ Sex and Waist are irrelevant

• wildcard mode

Risk Level Waist

BMI Level

BMI

Sex

Length

Weight

DMN 8



CURRENT DMN EXECUTION

• the “standard” bottom-to-top
• reasoning on sub-decisions
• wildcard mode

- Evaluate decision with partial
info

- E.g. set Sex as wildcard
- Returns all possible solutions

Risk Level Waist

BMI Level

BMI

Sex

Length

Weight

DMN 8



2 IDP



IDP

IDP system: knowledge-based reasoning engine
→ knowledge is modeled in extended FOL

(BMI < 18.5⇒ BMILevel = Underweight)
∧(18.5 ≤ BMI < 18.5⇒ BMILevel = Normal)
∧(25 ≤ BMI < 30⇒ BMILevel = Overweight)

∧(30 ≤ BMI⇒ BMILevel = Obese)

(1)

BMI Level
U BMI BMILevel
1 < 18.5 Underweight
2 [18.5..25] Normal
3 (25..30] Overweight
4 > 30 Obese

IDP 10



IDP
IDP supports various inference tasks to reason on
knowledge
• Model expansion

- input: an assignment of values
- output: compute complete assignment, such that KB is
satisfied

• Propagation
• Optimization
• Explanation
• . . .

IDP 11



IDP
IDP supports various inference tasks to reason on
knowledge
• Model expansion
• Propagation

- input: an assignment of values
- output: (in-)equalities that are now implied by the KB
- E.g. of the form “BMILevel 6= Obese”

• Optimization
• Explanation
• . . .

IDP 11



IDP
IDP supports various inference tasks to reason on
knowledge
• Model expansion
• Propagation
• Optimization

- input: an assignment of values
- output: compute complete assignment, such that KB is
satisfied AND specific term is max-/minimised

• Explanation
• . . .

IDP 11



“COMPLEX” SYSTEMS BASED ON DMN

DMN could be used to build knowledge-based AI

Cobot: example

Cobot that assists operator in assembly
→ knowledge can probably be modeled in DMN

However, to actually apply it, the current execution methods
are not sufficient!
Can we make IDP-based API to support more methods?

IDP 12



GOALS OF API

Goals of API:
• Support reasoning on DMN, by using IDP as “execution

engine”
• Allow DMN models to be used in more ways
• Support features necessary for generic implementations

IDP 13



3 DMN-IDPY API



DMN-IDPY FEATURES

Features:
• Bottom-to-top calculation
• Reasoning with incomplete information
• Relevance
• Multidirectional Reasoning
• Known Variables
• Variable type and values
• Optimization

DMN-IDPy API 15



BOTTOM-TO-TOP

The “standard” DMN execution method
→ can be performed by model expansion!

spec = DMN(’bmi.dmn’)
spec.set_value(’weight’, 74)
spec.set_value(’length’, 1.79)
spec.set_value(’sex’, ’Male’)
spec.set_value(’waist’, 90)

→

>>>> spec.model_expand(1)
Model 1
==========
riskLevel:={−>Low}
waist:={−>104}
BMILevel:={−>Normal}
bmi:={−>23.09540900720951}
sex:={−>Male}
weight:={−>74}
length:={−>1.79}

DMN-IDPy API 16



REASONING WITH
INCOMPLETE INFORMATION

• We might not know all information
• We might not need all decisions
• E.g. to calculate BMI, we only need weight and height
→ reason with incomplete information by propagating!

spec.set_value(’Weight’, 74)
spec.set_value(’Length’, 1.79)
spec.propagate()

→ >>> spec.value_of(’BMI’)
23.09540900720951

DMN-IDPy API 17



RELEVANCE

Sub-goal of API: allow development of “generic” tools
• It should be possible to query inputs necessary for

decision
• avoids hard-coding a specific order!
• Not only “direct inputs”: all upstream variables

DMN-IDPy API 18



RELEVANCE

>>> spec.dependencies_of(’BMILevel’)
{’BMI’: 0, ’Weight’: 1, ’Length’: 1}

>>> spec.dependencies_of(’BMILevel’)
{’BMILevel’: 0, ’BMI’: 1, ’Weight’: 2, ’Length’: 2,
’Sex’: 0, ’Waist’: 0}

DMN-IDPy API 19



MULTIDIRECTIONAL REASONING

• “Standard” DMN approaches always work bottom to top
• But we can do more!
• Using IDP, we can reason in any direction!
• “Unlocks” many more uses for single DMN model

DMN-IDPy API 20



MULTIDIRECTIONAL REASONING

Example: input BMI directly

spec.set_value(’BMI’, 31)
spec.propagate()

→ >>> spec.value_of(’BMILevel’)
Obese

DMN-IDPy API 21



MULTIDIRECTIONAL REASONING: EXAMPLE

• We have calculated BMILevel = Overweight
• Logical next question:

- “What should weight be for healthy BMI?”
• Easy solution: guess until you find correct answer

- Only easy for small models
- Never 100% precise

→ Apply DMN model “in reverse”!

DMN-IDPy API 22



MULTIDIRECTIONAL REASONING

Example: using model “in reverse”
→ e.g. calculate weight based on length and BMI:
→ knowledge is already present

spec.set_value(’BMI’, ’25’)
spec.set_value(’Length’, 1.79)
spec.propagate()

→ >>> spec.value_of(’Weight’)
80.1025

DMN-IDPy API 23



MULTIDIRECTIONAL REASONING

Simply “reverse” DMN table?

BMI Level
U BMI BMILevel
1 < 18.5 Underweight
2 [18.5..25] Normal
3 (25..30] Overweight
4 > 30 Obese

BMI Level
U BMILevel BMI
1 Underweight < 18.5
2 Normal [18.5..25]
3 Overweight (25..30]
4 Obese > 30

Output can now be range, list of values, ...
(sidenote: this would change meaning of table – this is just an example, not what we actually do)

DMN-IDPy API 24



MULTIDIRECTIONAL REASONING: CAVEAT

In standard execution, every set of inputs has single solution
→ now, it can be a solution space
→ two ways of overcoming this:
• Model expansion to generate specific solution
• Optimization (see later)

DMN-IDPy API 25



KNOWN VARIABLES

DMN-IDPy allows variable to be assigned a value at any time
• Either by user (set_value)
• Or by system, when propagating
• We need to know what variables have a known value

spec.set_value(’Length’, 1.79)
spec.set_value(’Weight’, 79)
spec.propagate()

→
>>> spec.is_certain(’BMI’)
True
>>> spec.is_certain(’Sex’)
False

DMN-IDPy API 26



VARIABLE TYPE AND VALUES

Variables in DMN are typed, e.g. String, Int, Float, ...
>>> spec.type_of(’Sex’)
String
>>> spec.possible_values_of(’Sex’)
[’Male’, ’Female’]

DMN-IDPy allows us to query this information

DMN-IDPy API 27



OPTIMIZATION
Find solution with highest or lowest value for a term
→ E.g. “What should my target weight be to be healthy?”
>>> spec.set_value(’Length’, 1.79)
>>> spec.set_value(’BMILevel’, ’Normal’)
>>> spec.maximize(’Weight’)
Model 1
==========
RiskLevel:={−>Low}
BMILevel:={−>Normal}
BMI:={−>25}
Weight:={−>80.1025}
Length:={−>1.79}

DMN-IDPy API 28



4 APPLICATION
EXAMPLE



APPLICATION

Example

Consider an “interactive DMN execution engine”
1 interpret any DMN model
2 ask user what they want to calculate
3 query all necessary inputs
4 output value

→ . . . primitive chat bot?
Application example 30



APPLICATION
→ Using API: 23 lines of Python

>>> python bot.py bmi.dmn
Which variable to calculate? [’RiskLevel’, ’BMILevel’, ’BMI’]
> Risk Level
The following variables are still unknown:
[’Weight’, ’Length’]
Value for Weight (Real) unknown.
> 79
Value for Length (Real) unknown.
> 1.79
Calculated value for Risk Level:
Normal

Application example 31



Thank you for your attention.



ANY QUESTIONS?

For further questions or discussion:
s.vandevelde@kuleuven.be

For more information on DMN-IDPy:
https://cdmn.readthedocs.io/en/latest/DMN_guide.html

Application example 33

s.vandevelde@kuleuven.be
https://cdmn.readthedocs.io/en/latest/DMN_guide.html

	DMN
	IDP
	DMN-IDPy API
	Application example

