Context-Aware Verification of DMN **HICSS 2022**

狐

Simon Vandevelde, Benjamin Callewaert. Joost Vennekens KU Leuven – FAVISE – DTAI January 2022

- 1. DMN & Verification
- 2. Context
- 3. Context-Aware Verification
- 4. Implementation
- 5. Comparison
- 6. Conclusion

DMN & Verification

WHAT IS DMN?

Decision Model and Notation standard

- Maintained by OMG group
- Notation for decision logic
- Aim: readability, user-friendliness, executable
- Two components:
 - Decision Tables
 - Decision Requirements Diagram

DECISION TABLE

- Table-based representation of definition
- "output" variables defined by "input" variables
- A row fires if input values match

BN	/ILevel	
U	BMI	BMILevel
1	< 18.5	Underweight
2	[18.525]	Normal
3	> 25	Overweight

- Defines behavior of a table
- Single hit:

U(nique): exactly one row may fire A(ny): all fired rows should express same output F(irst): of all fired rows, the top-most is applied

• Multiple hit not discussed further

- 1 Complete
- 2 Sound
- 3 Without unfireable rules

- 1 Complete
 - Contains applicable row for each set of inputs
- 2 Sound
- 3 Without unfireable rules

- 1 Complete
- 2 Sound
 - U: no overlaps
 - A: no conflicting overlap
 - F: overlap allowed
- 3 Without unfireable rules

- 1 Complete
- 2 Sound
- 3 Without unfireable rules
 - No redundant rules (that will never fire)

¹ Smit et al

DMN & Verification

Work	Sound- ness	Complete- ness	Unfireable rules	Context
Calvanese et al. (2016)	0	Х		
Laurson et al. (2016)	0	Х		
Batoulis et al. (2017)	0	Х		
Calvanese et al. (2018)	0	Х		
Corea et al. (2019)	Х	Х		
Calvanese et al. (2019)	o †	X†	X†	Х
Hasic et al. (2020)	Х	Х		0
Our tool	X*	Х	Х	X

* = does not distinguish between types of soundness

† = boolean result

Most tools verify a decision table in isolation

Most tools verify a decision table *in isolation* with two exceptions:

- Hasic et al. (2020)
- Calvanese et al. (2019)

Most tools verify a decision table *in isolation* with two exceptions:

- Hasic et al. (2020)
 - Does each output value appear as input in next table(s)?
 - Does each input value appear as output in previous table(s)?
 - Limited verification!
- Calvanese et al. (2019)

Most tools verify a decision table *in isolation* with two exceptions:

- Hasic et al. (2020)
- Calvanese et al. (2019)
 - Presents semantic DMN, incorporating background knowledge
 - Extended verification with context
 - But: limited to boolean output

CONTEXT

WHAT IS CONTEXT?

them also always was in table, watched the 1 wondered what he lows and admirating investigation for the fact that with the gran. English for the atministeries of a

Context

Information not contained in the table

Two types:

- 1 In-model context
- 2 Background knowledge

Context

Information contained in "the rest of the model" \rightarrow i.e., in all other tables

Context

Risk	Level			
U	BMILevel	Sex	Waist	Risk Level
1	Normal	-	-	Low
2	Underweight	-	-	High
3	Overweight	Male	≤ 102	Increased
4	Overweight	Male	> 102	High
5	Overweight	Female	≤ 88	Increased
6	Overweight	Female	> 88	High
7	Obese	Male	≤ 102	High
8	Obese	Male	> 102	Very High
9	Obese	Female	≤ 88	High
10	Obese	Female	> 88	Very High

Risk level is complete, sound and free of unfireable rules

Context

on the always was, table, watched his wordered with he ree and admiration owned the fact that the grow Exploit the encitoment of many host I through the children to with he

				Risk	Level			
				U	BMILevel	Sex	Waist	Risk Level
BMI	Level			1	Normal	-	-	Low
U	BMI	Sex	BMILevel	2	Underweight	-	-	High
1	< 18.5	Female	Underweight	3	Overweight	Male	≤ 102	Increased
2	< 25	Male	Underweight	4	Overweight	Male	> 102	High
3	[18.525]	Female	Normal	5	Overweight	Female	≤ 88	Increased
4	(2530]	Male	Normal	6	Overweight	Female	> 88	High
5	(2530]	Female	Overweight	7	Obese	Male	≤ 102	High
6	> 30	-	Obese	8	Obese	Male	> 102	Very High
				9	Obese	Female	≤ 88	High
				10	Obese	Female	> 88	Very High

Risk level is complete, sound and free of unfireable rules?

em after adverges wear, tables, wentcheed his woonderwei what he ree and admiration werest the fact that h his grim English that employed to the ware, hust I throught a failur to a which her

				Risk	Level			
				U	BMILevel	Sex	Waist	Risk Level
BMI	Level			1	Normal	-	-	Low
U	BMI	Sex	BMILevel	2	Underweight	-	-	High
1	< 18.5	Female	Underweight	3	Overweight	Male	≤ 102	Increased
2	< 25	Male	Underweight	4	Overweight	Male	> 102	High
3	[18.525]	Female	Normal	5	Overweight	Female	≤ 88	Increased
4	(2530]	Male	Normal	6	Overweight	Female	> 88	High
5	(2530]	Female	Overweight	7	Obese	Male	≤ 102	High
6	> 30	-	Obese	8	Obese	Male	> 102	Very High
				9	Obese	Female	≤ 88	High
				10	Obese	Female	> 88	Very High

Risk level is complete, sound and free of unfireable rules \rightarrow The combination "Male, Overweight" can never happen!

Context

BACKGROUND KNOWLEDGE

Information about the domain, which is not explicitly present

- Knowledge not needed to make decision
- But might be useful when verifying

them also always was to table, watched his a 1 woundered what he s is weat the fact that we saw wat the fact that with his grain English for the excitament of some the sectoment of

BACKGROUND KNOWLEDGE

Sequence ID					
U	Station Type	Location	Status	ID	
1	-	origin	departure	s1a	
2	minor	intermediate	departure	s1b	
3	major	intermediate	departure	s1c	
4	airport	intermediate	departure	s1d	
5	-	-	in between	s2	
6	-	intermediate	arrival	s3a	
7	minor	terminating	arrival	s3b	
8	major	terminating	arrival	s3b	
9	airport	terminating	arrival	s3c	

- If Location = terminating, status is never "departure"
- If Location = origin, status is never "arrival"

BACKGROUND KNOWLEDGE

Impossible input combinations are left out

- \rightarrow Modeller knows these cannot happen
- $\rightarrow\,$ But verification tools would suggest adding them for completeness

Seq	uence ID: missing	g rules?		
U	Station Type	Location	Status	ID
1	-	terminating	departure	?
2	-	origin	arrival	?

CONTEXT-AWARE VERIFICATION

COMPLETENESS

Completeness

A table is complete if it contains an applicable rule for each legal configuration of input values. Or: there is no combination of inputs for which no rule fires

COMPLETENESS

Completeness with context

A table is complete if it contains a rule for each set of variables that satisfies all other tables and the background knowledge.

We have background knowledge that $Location = terminating \Rightarrow Status \neq Departure$ \rightarrow table should not contain a rule for this

Soundness

Soundness

Decision table with U hit policy is sound when rules are mutually exclusive.

Soundness

Soundness with context

Decision table with U hit policy is sound when rules are mutually exclusive, which does not change with context.

them also adverges was, a table, watched his I wondered what he lowe and admiration a resent the fact that 0th has grave English for the excitament of means the excitament of

UNFIREABLE RULES

Unfireable rules

For each row, there should be a set of input values which triggers it.

UNFIREABLE RULES

Unfireable rules with context

For each row, there should be a set of input values (which satisifies all other tables, and the background knowledge) which triggers it.

In the example, the input combination *Sex = Male* and *BMILevel = Overweight* does not satisfy the other tables.

MPLEMENTATION

IMPLEMENTATION

Implementation of context-aware verification

- $\rightarrow~$ To show proof of concept
- $\rightarrow\,$ Implemented using IDP system

IDP SYSTEM

State-of-the-art logical solver

Implementation

IDP SYSTEM

State-of-the-art logical solver

Knowledge Base Paradigm

Store knowledge separately from its use in a Knowledge Base (KB), after which multiple inference tasks are available to solve problems.

IDP SYSTEM

State-of-the-art logical solver

Knowledge Base Paradigm

Store knowledge separately from its use in a Knowledge Base (KB), after which multiple inference tasks are available to solve problems.

Knowledge is represented in extended First Order Logic

BMI	Level	
U	BMI	BMILevel
1	< 18.5	Underweight
2	[18.525]	Normal
3	> 25	Overweight

 $(BMI < 18.5 \Rightarrow BMILevel = Underweight)$ $\land (18.5 \le BMI \le 25 \Rightarrow BMILevel = Normal)$ $\land (BMI > 25 \Rightarrow BMILevel = Overweight)$

IDP INFERENCES

- progagation: given partial interpretation, compute the consequences
- model expand: given partial interpretation, generate full interpretation that satisfies KB
- abstract model generation: search for set of constraints that imply the theory

VERIFICATION IN IDP

KB = verification table j + all other tables of the model + the background knowledge \rightarrow table j's representation is changed to contain Row(r) as output.

 $(BMI < 18.5 \Rightarrow Row(1))$ $\land (18.5 \le BMI \le 25 \Rightarrow Row(2))$ $\land (BMI > 25 \Rightarrow Row(3))$

COMPLETENESS IN IDP

"Find set of *legal* assignments for which no row fires" \rightarrow add $\forall r : \neg Row(r)$. to KB

- $\rightarrow\,$ table is only complete if no solution can be found
- \rightarrow model expansion tells us *if* table is complete
- $\rightarrow\,$ AMG can list the missing rules

SOUNDNESS IN IDP

"Find set of *legal* assignments for which more than 1 row fires "

- $\rightarrow \operatorname{add} \#\{r: Row(r)\} > 1.$ to KB
- $\rightarrow\,$ I.e. "The number of rows which fire should be higher than 1"
- $\rightarrow\,$ Table is sound if no solution can be found
- ightarrow Model expansion points out overlap

UNFIREABLE RULES

"Find Row(i) that will always be false, i.e., that can never be true"

- \rightarrow IDP's propagation can derive this!
- $\rightarrow~$ No additions to our KB are needed

DMN-IDP:

- DMN modeller combined with IDP-based interface
- Translated DMN into IDP KB automatically

Extended with the verification capabilities

Available at https://dmn-idp.herokuapp.com

COMPARISON

CALVANESE ET AL.

- Completeness verification is not only boolean
 - $\rightarrow~$ AMG can show us the missing rules
- Overlapping rules can be pinpointed
- Unfireable rules can be pinpointed

HASIC ET AL.

- They do not detect unfireable rules in first example
- Does not find table in second example complete

HASIC ET AL.

- They do not detect unfireable rules in first example
- Does not find table in second example complete

	BMI (Risk Level)	Train sequence
Hasic et al.	118s	97s
Our tool	1245s	287s

CONCLUSION

CONCLUSION

- Most SotA solvers verify tables "in isolation"
- However, context is important!
 - The other tables of the model
 - Background knowledge
- We have extended formal correctness criteria
- And implemented in concrete tool
- This tool offers more functionality in comparison with others

Questions?

s.vandevelde@kuleuven.be

