
Tackling the DMN Challenges with cDMN:
A Tight Integration of DMN and Constraint

Reasoning

Bram Aerts, Simon Vandevelde, Joost Vennekens

KU Leuven, De Nayer Campus, Dept. of Computer Science
{b.aerts, s.vandevelde, joost.vennekens}@kuleuven.be

Abstract. This paper describes an extension to the Decision Model and
Notation (DMN) standard, called cDMN. DMN is a user-friendly, table-
based notation for decision logic. cDMN aims to enlarge the expressivity
of DMN in order to solve more complex problems, while retaining DMN’s
goal of being readable by domain experts. We test cDMN by solving
the most complex challenges posted on the DM Community website.
We compare our own cDMN solutions to the solutions that have been
submitted to the website and find that our approach is competitive, both
in readability and compactness. Moreover, cDMN is able to solve more
challenges than any other approach.

1 Introduction

The Decision Model and Notation (DMN) [4] standard, designed by the Object
Management Group (OMG), is a way of representing data and decision logic in a
readable, table-based way. It is intended to be used directly by business experts
without the help of computer scientists.

While DMN is very effective in modeling deterministic decision processes, it
lacks the ability to represent more complex kinds of knowledge. In order to ex-
plore the boundaries of DMN, the Decision Management Community website1

issues a monthly decision modeling challenge. Community members can then
submit a solution, using their preferred decision modeling tools or programming
languages. This allows solutions for complex problems to be found and compared
across multiple DMN-like representations. So far, none of the available solvers
have been able to solve all challenges. Moreover, the available solutions some-
times fail to meet the readability goals of DMN, because the representation is
either too complex or too large.

In this paper, we propose an extension to the DMN standard, called cDMN. It
allows more complex problems to be solved, while remaining readable by business
users. The main features of cDMN are constraint modeling, quantification, and

1 https://dmcommunity.org/

This research received funding from the Flemish Government under the “Onderzoek-
sprogramma Artificiële Intelligentie (AI) Vlaanderen” programme.

https://dmcommunity.org/

the use of concepts such as types and functions. We test the usability of cDMN
on the decision modeling challenges.

In [3], we presented a preliminary version of constraint modeling in DMN.
In the current paper, we extend this by adding quantification, types, functions,
relations, data tables, optimization and by evaluating the formalism on the DMN
challenges.

The paper is structured as follows. In Section 2 we briefly describe the DMN
standard. Section 3 gives an overview of the challenges used in this paper. After
this, we touch on the related work in Section 4. We discuss both syntax and
semantics of our new notation in Section 5. Section 6 briefly discusses the imple-
mentation of our cDMN solver. We compare our notation with other notations
and evaluate its added value in Section 7, and conclude in Section 8.

2 Preliminaries: DMN

The DMN standard [4] describes the structure of a DMN model. Such a model
consists of two components: a Decision Requirements Diagram (DRD), which is
a graph that expresses the structure of the model, and Decision Tables, which
contain the in-depth business logic. An example of such a decision table can
be found in Figure 1. It consists of a number of input columns (darker green)
and a single output column (lighter blue). Each row is read as: if the input
conditions are met (e.g., if “Age of Person” satisfies the comparison “≥ 18”
), then the output expression is assigned the value of the output entry (e.g.
“Person is Adult” is assigned value “Yes”). Only single values, such as strings
and numbers, can be used as output entries. In the case where no row matches the
input, then each output is either set to the special value null (which is typically
taken to indicate an error in the specification) or to the output’s default value,
if one was provided.

The behaviour of a decision table is determined by its hit policy. There are
a number of single hit policies, which define that a table can have at most one
output for each possible input, such as “Unique” (no overlap may occur), “Any”
(if there is an overlap, the outputs must be the same) and “First” (if there is
an overlap, the first applicable row should be selected). There exist also multiple
hit policies such as C (collect the output of all applicable rows in a list) and C+
(sum the output of all applicable rows). Regardless of which hit policy is used,
each decision table uniquely determines the value of its output(s).

Fig. 1: Decision table to define whether a person is an adult.

The entries in a decision table are typically written in the (Simple) Friendly
Enough Expression Language, or (S-)FEEL, which is also part of the DMN
standard. S-FEEL allows to express simple values, lists of values, numerical

comparisons, ranges of values and calculations. Decision tables with S-FEEL are
generally considered quite readable by domain experts.

In addition, DMN also allows more complex FEEL statements in combination
with boxed expressions, as will be illustrated in Figure 6. However, this also
greatly increases complexity of the representation, which makes it unsuitable to
be used by domain experts without the aid of knowledge experts.

3 Challenges Overview

Of all the challenges on the DM Community website, we selected those that
did not have a straightforward DMN-like solution submitted. The list of the 21
challenges that meet this criterion can be found in the cDMN documentation2.

We categorize these challenges according to four different properties. Table
1 shows the list of properties, and the percentage of challenges that have this
property.

The most frequent property is the need for aggregates (57.14%), such as
counting the number of violated constraints in Map Coloring with Violations
or summing the number of calories of ingredients in Make a Good Burger. The
second most frequent property is having constraints in the problem description
(33.33%). E.g., in Who Killed Agatha, the killer hates the victim and is no richer
than her; or the constraint in Map Coloring states that two bordering coun-
tries can not share the same color. The next property, universal quantification
(28.75%), is that a statement applies to every element of a type, for example in
Who Killed Agatha? : nobody hates everyone. The final property, optimization,
occurs in 23.81% of the challenges. For example, in Zoo, Buses and Kids the
cheapest set of buses must be found.

Property (%)

1. Aggregates needed 57.14
2. Constraints 33.33
3. Universal quantification 28.75
4. Optimization 23.81

Table 1: Percentage of occurrence of properties in challenges.

4 Related Work

It has been recognized that even though DMN has many advantages, it is some-
what limited in expressivity [1,3]. This holds especially for decision tables with
S-FEEL, the fragment of FEEL that is considered most readable. While full
FEEL is more expressive, it is not suitable to be used by domain experts with-
out the aid of knowledge experts. Moreover, it does not provide a solution to
other shortcomings, such as the lack of constraint reasoning and optimization.

One of the systems that does effectively support constraint solving in a read-
able DMN-like representation is the OpenRules system [5]. It enables users to

2 https://cdmn.readthedocs.io/en/latest/community.html

https://cdmn.readthedocs.io/en/latest/community.html

define constraints over the solution space by allowing “Solver Tables” to be added
alongside decision tables. In contrast to standard decisions, which assign a spe-
cific value to an output, Solver Tables allow for setting constraints on the output
space. OpenRules offers a number of DecisionTableSolve-Templates, which can
be used to specify these constraints. It is possible to either use these predefined
templates, or define such a template manually if the predefined ones are not
expressive enough. Even though this system extends the range of applications
that can be handled, there are three reasons why it does not offer the ease of use
for business users that we are after. First, because of the wide range of available
templates for solver tables, which differ from that of standard decision tables,
using the OpenRules constraint solver entails a steep learning curve. Second,
the solver’s functionality can only be accessed through the Java API, which goes
against the DMN philosophy [4, p. 13]. Third, because of the lack of quantifi-
cation in OpenRules, solutions are generally not independent of domain size,
which reduces readability.

Another system that aims to increase expressiveness of DMN is Corticon [6].
It implements a basic form of constraint solving by allowing the user to filter the
solution space. While this approach indeed improves expressiveness, it decreases
readability. Moreover, some constraints can only be expressed by combining a
number of rules and a number of filters. For example, when expressing “all fe-
male monkeys are older than 10 years”, this is split up in two parts; (1) a rule that
states Monkey.gender = female & Monkey.Age < 10 THEN Monkey.illegal =

True and (2) a filter that states that a monkey cannot be illegal: Monkey.illegal
= False. There are no clear guidelines about which part of the constraints should
be in the filter and what should be a rule.

In [1], Calvanese et al propose an extension to DMN which allows for ex-
pressing additional domain knowledge in Description Logic. They share our goal
of extending DMN to express more complex real-life problems. However, they
introduce a completely separate Description Logic formalism, which seems too
complex for a domain expert to use. Unfortunately, they did not submit any
solutions to the DMN Challenges, which leaves us unable to compare its expres-
siveness in practice.

5 cDMN: Syntax & Semantics

While DMN allows users to elegantly represent a deterministic decision pro-
cess, it lacks the ability to specify constraints on the solution space. The cDMN
framework extends DMN, by allowing constraints to be represented in a straight-
forward and readable manner. It also allows for representations that are indepen-
dent of domain size by supporting types, functions, relations and quantification.

We now explain both the usage and the syntax of every kind of table present
in cDMN.

5.1 Glossary

In logical terms, the “variables” used in standard DMN correspond to constants
(i.e., 0-ary functions). cDMN extends these by adding n-ary functions and n-ary
relations. Similarly to OpenRules and Corticon, we allow the user to define their
vocabulary by means of a glossary. This glossary contains every symbol used
in a cDMN model. It consists of at most five glossary tables, each enumerating
a different kind of symbol. An example glossary for the Who Killed Agatha?
challenge is given in Figure 2.

Type
Name Type Values
Person string Agatha, Butler, Charles
Number int [0..100]

Relation
Name
Person hates Person
Person is richer than Person

Boolean
Name
Suicide

Constant
Name Type
Killer Person

Function
Name Type
Hatees of Person Number

Fig. 2: An example cDMN glossary for the Who Killed Agatha? problem.

In the Type table, type symbols are declared. The value of each type is a set
of domain elements, specified either in the glossary or in a data table (see section
5.3). An example is the type Person, which contains the names of people.

In the Function table, a symbol can be declared as a function of one or
more types to another. The infix operator of is used to apply the function to its
argument(s). For example, the Hatees of Person function denotes how many
people a person hates. It maps each element of type Person to an element of
type Number. Functions with n > 1 arguments can be declared by separating the
n arguments by the keyword and.

For each domain element, a constant with the same name is automatically
introduced, which allows the user to refer to this domain element in constraint
or decision tables. For instance, the user can use the constant Agatha to refer
to the domain element Agatha. In addition, the Constant table allows other
constants to be introduced. Recall that such logical constants correspond to
standard DMN variables. In our example case, we use a constant Killer of the
type Person, which means it can refer to any of the domain elements Agatha,
Butler or Charles.

In the Relation table, a verb phrase can be declared as a relation on one or
more given types. For instance, the relation Person is Adult denotes for each
Person whether they are an adult. This relation translates to the unary predicate
isAdult . n-ary predicates can be defined by using n arguments in the name, e.g.
Person is richer than Person is a relation with two arguments (both of the
type Person), that denotes whether one person is richer than another.

The Boolean table contains boolean symbols (i.e. propositions), which are
either true or false. An example is the boolean Suicide, which denotes whether
the murder is a suicide.

5.2 Decision Tables and Constraint Tables

As stated earlier in Section 2, a standard decision table uniquely defines the
value of its outputs. We extend DMN by allowing a new kind of table, called a
constraint table, which does not have this property.

Whereas decision tables only allow single values to appear in output columns,
our constraint tables allow arbitrary S-FEEL expressions in output columns,
instead of only single values. Each row of a constraint table represents a logical
implication, in the sense that, if the conditions on the inputs are satisfied, then
the conditions on the outputs must also be satisfied. This means that if, for
instance, none of the rows are applicable, the outputs can take on an arbitrary
value, as opposed to being forced to null. In constraint tables, no default values
can be assigned. Because of these changes, a set of cDMN tables does not define a
single solution, but rather a solution space containing a set of possible solutions.

We introduce a new hit policy to identify constraint tables. We call this the
Every hit policy, denoted as E*, because it expresses that every implication in
the table must be satisfied. An example of this can be found in Figure 3, which
states that each person hates less than 3 people.

cDMN does not only introduce constraint tables, it also extends the expres-
sions that are allowed in column headers, both in decision and constraint tables.
Such a header can consist of the following expressions: (1) a type Type; (2) an
expression of the form “Type called name”; (3) a constant; (4) an expression of
the form “Function of arg1 and ... and argn”, where each of the arg i is another
header expression; (5) an arithmetic combination of header expressions (such as
a sum).

The first two kinds of expressions are called variable header expressions. They
allow universal quantification in cDMN. Each input column whose header con-
sists of such a variable expression either introduces a new universally quantified
variable (we call this a variable-introducing column), or refers back to a variable
introduced in a preceding variable-introducing column. Subsequent uses of the
same type name (in case of the first kind of variable-introducing expression)
or of the variable name (in case of the second kind) then refer back to this
universally quantified variable. Whenever a type or variable name appears in a
header of a column that is itself not variable-introducing, a unique preceding
variable-introducing column that has introduced this variable must exists.

The table in Figure 3 shows an example of quantification in cDMN. It in-
troduces a universally quantified variable of the type Person, stating that every
person hates less than three others. To illustrate the use of named variables,
Figure 4 defines variables c1 and c2, both of the type Country, and states that
when those countries are bordering, they cannot have the same color.

In summary, this section has discussed three ways in which cDMN extends
DMN. First, the hit policy E* changes the semantics of the table. Second, con-
straint tables allow S-FEEL expressions in the output columns. Third, cDMN
allows quantification, functions, predicates and calculations to be used in both
decision tables and constraint tables.

Noone hates all
E* Person Hatees of Person

1 - <3

Fig. 3: Part of the implementation of “Nobody hates everyone” in Who Killed
Agatha?.

Bordering countries can not share colors
E* Country called c1 Country called c2 c1 and c2 are Bordering Color of c1

1 - - Yes Not(Color of c2)

Fig. 4: Example of a constraint table with quantification in cDMN, defining that
bordering countries can’t share colors.

5.3 Data Tables

Typically, problems can be split up into two parts: (1) the general logic of the
problem, and (2) the specific problem instance that needs to be solved. Take
for example the map coloring problem: the general logic consists of the rule
that two bordering countries cannot share a color, whereas the instance of the
problem is the specific map (e.g. Western Europe) to color. cDMN extends the
DMN standard to include data tables, which are used to represent the problem
instances, separating them from the general logic. The format of a data table
closely resembles that of a decision table, with a couple of exceptions. Instead
of a hit policy, a data table has “data table” in its name. Furthermore, only
basic values (integers, floats and domain elements) are allowed in data tables.
It is also possible for columns to have more than one value in a certain row, in
which case the row is instantiated for the combination of each of the values of
the columns. As an example, a snippet of the data table for the Map Coloring
challenge is shown in Figure 5.

This use of data tables offers several advantages.

1. There is a methodological advantage: by separating the data tables from the
decision tables, reusing the specification becomes easier.

2. If the user chooses to enumerate the domain of a type in the glossary, then
the system checks that each value in a data table indeed belongs to the
domain of the appropriate type. This helps to prevent errors or typos in the
input data or glossary. If the user chooses not to enumerate a type in the
glossary, then the type’s domain defaults to the set of all values in the data
table.

3. The cDMN solver is able to compute solutions faster, due to a different
internal representation between data tables and decision tables.

Data Table: Declaring which countries border
Country called c1 Country called c2 c1 and c2 are Bordering

1 Belgium France, Luxembourg, Netherlands, Germany Yes
2 Germany France, Denmark, Luxembourg, Belgium, Netherlands Yes

Fig. 5: Data table describing countries and their neighbours

5.4 Execute Table

A standard DMN model defines a deterministic decision procedure. It is typically
always used in the same way: the external inputs are supplied by the user, after
which the values of the output variables are computed by forward propagation.

In cDMN, this is no longer the case. We can fill in as many or as few variables
as we want, and use the model to derive useful information about the not-yet-
known variables. By employing an execute table, users can specify what the model
is to be used for: model expansion or optimization. Model expansion creates a
given number of solutions, and optimization looks for the solution with either
the lowest or highest value for a given term.

5.5 Semantics of cDMN

We describe the semantics of cDMN by translating it to the FO(·) language used
by the IDP system [2,7]. FO(·) is a rich extension of First Order Logic, adding
concepts such as types, aggregates and inductive definitions. The semantics of
cDMN is defined by the semantics of each of its sub-components.

It is straightforward to translate the glossary into an FO(·) vocabulary: types,
functions, constants, relations and booleans are each translated to their FO(·)
counterpart.

Decision tables retain their usual semantics as described by Calvanese [1].
We briefly recall this semantics. Each cell of a decision table (i, j) corresponds
to a formula Fij(x) in one free variable x. For instance, a cell “≤ 50” corresponds
to the formula “x ≤ 50”. A decision table with rows R, input columns I and
output columns O is a conjunction of material implications:∧

i∈R

(∧
j∈I

Fij(Hj)⇒
∧
k∈O

Fik(Hk)

)
where Hj is the header of column j. For example, the table in Figure 1

corresponds to the logical formula (AgeOfPerson ≥ 18 ⇒ PersonIsAdult =
Yes) ∧ (AgeOfPerson < 18⇒ PersonIsAdult = No).

Data tables are simply a specific case of decision tables.
In [3], the semantics of simple constraint tables (without quantification and

functions) is introduced, which is also a conjunction of implications. The se-
mantics of constraint tables and decision tables differ in the interpretation of
incomplete tables: when no rows are applicable in decision tables, the output
is forced to null (i.e., the implicit default value is null), while the output in
constraint tables can take any value.

Now we extend this semantics to take variables and quantification into ac-
count. Our first step is to define a function that maps cDMN expressions to
terms. For the most part, this definition corresponds to that of Calvanese [1].
However, we extend it to take into account the fact that certain expressions –
which we call variable expressions – must be translated to FO variables. There
are three kinds of variable expressions. We now define a mapping ν that maps
each of these three kinds of cDMN variable expressions to a typed FO variable
x of type T , which we denote as x[T]:

– The name T of a type is a variable expression. We define ν(T) = xT [T], with
xT a new variable of type T .

– An expression e of the form “Type called v” is a variable expression. We
define ν(e) = v[Type].

– If the header of a column contains an expression “Type called v”, then v is
a variable expression in all subsequent columns of the table and in its body.
We define ν(v) as v[Type].

Given this function ν, we now define the following mapping tν(·) of cDMN
expressions to terms.
– For a constant c, tν(c) = c; similarly, for an integer or floating point number
n, tν(n) = n;

– For an arithmetic expression e of the form e1θe2 with θ ∈ {+,−, ∗, /}, we
define tν(e) = tν(e1) θ tν(e2);

– For a variable expression v, we define tν(v) = ν(v).
– For a function expression, i.e. “Function of arg1 and ... and argn”:
tν(X) = Function(tν(arg1),, tν(argn)) .

Similarly to Calvanese, we translate each entry c in a cell (i, j) of a table into
a formula Fij(x) in one free variable x:
– If c is of the form ”θe” with θ one of the relational operators {≤,≥,=, 6=},

then Fij(x) is the formula x θ t(e);
– If c is of the form Not e, then Fij is x 6= t(e);
– If c is a list e1, . . . , en, then Fij is x = t(e1) ∨ . . . ∨ x = t(en). As a special

case, if c consists of a single expression e, then Fij is x = t(e).
– If c is a range, e.g. [e1, e2), then Fij is x ≥ t(e1) ∧ x < t(e2).

We are now ready to define the semantics of a constraint table. If I is the set
of input columns of the table, O the set of output columns and V ⊆ I the set of
variable introducing columns, we define the semantics of the table as:

∀
l∈V

ν(Hl) :
∧
i∈R

(∧
j∈I

Fij
(
tν(Hj)

)
⇒
∧
k∈O

Fik
(
tν(Hk)

))
For example, in Figure 3, ν(H1) = x[Person] and tν(H1) = x,

tν(H2) = Hatee(tν(H1)) = Hatee(x), which leads to the formula:

∀x[Person] : Hatee(x) < 3.

The above transformation turns each decision or constraint table T into an
FO(·) formula φT . The glossary and data tables together define a structure
S for part of the vocabulary. The domain of S consists of the union of the
interpretations It of all the types t. If t is enumerated in the glossary, then It
is this enumeration. Otherwise, It consists of all the values that appear in a
data table in a column of type t. The structure S interprets all the relations /
functions for which a data table is provided, and it interprets them by the set
of tuples / the mapping that is given in this table.

The set of “solutions” of a cDMN model is the set MX (Φ, S) of all model
expansions of the structure S w.r.t. the theory Φ = {φT | T is a constraint or
decision table}, i.e., the set of all structures S′ |= Φ that extend S to the entire
vocabulary.

6 Implementation

This section gives an overview of the inner workings of the cDMN solver3. It is
a brief overview, as the solver is not the main focus of this paper. The solver
consists of two parts: a constraint solver (the IDP system), and a converter from
cDMN to IDP input. In principle, any constraint solver could be used, but we
chose the IDP system because of its flexibility.

The cDMN to IDP converter is built using Python3, and works in a two-
step process. It first interprets all tables in a .xslx sheet and converts them
into Python objects. For example, the converter parses all the glossary tables
and converts them into a single Glossary object, which then creates Type and
Predicate objects. The created Python objects are then converted into IDP
blocks. More detailed information about this conversion can be found in the
cDMN documentation4, along with an explanation of the usage of the solver
and concrete examples of cDMN implementations.

7 Results and discussion

In this section we first look at three of the DM Community challenges, each
showcasing a feature of cDMN. For each challenge, we compare the DMN im-
plementations from the DM Community website with our own implementation
in cDMN. Afterwards, we compare all challenges on size and quality.

7.1 Constraint tables

Fig. 6: An extract of the map coloring solution in standard DMN with FEEL

Constraint tables allow cDMN to model constraint satisfaction problems in
a straightforward way. For example, in Map Coloring, a map of six European

3 https://gitlab.com/EAVISE/cdmn/cdmn-solver
4 www.cdmn.be

https://gitlab.com/EAVISE/cdmn/cdmn-solver
www.cdmn.be

countries must be colored in such a way that no neighbouring countries share
the same color. For this challenge, a pure DMN implementation was submitted,
of which Figure 6 shows an extract. The implementation uses complicated FEEL
statements to solve the challenge. While these statements are DMN-compliant,
they are nearly impossible for a business user to write without help. In cDMN,
we can use a single straight-forward constraint table to solve this problem, as
shown in Figure 4. Together with the glossary and a data table (Figure 5), this
forms a complete yet simple cDMN implementation.

7.2 Quantification

Quantification is useful in the Monkey Business challenge. In this challenge, we
want to know for four monkeys what their favorite fruit and their favorite resting
place is, based on some information. There are two DMN-like submissions for
this challenge: one using Corticon, and one using OpenRules.

(a) Open Rules

Monkey Constraints
E* Monkey Place of Monkey Fruit of Monkey
.

2 — Rock Apple
.

(b) cDMN

Fig. 7: An extract of Monkey Business implementation in (a) OpenRules and
(b) cDMN, specifying “The monkey who sits on the rock is eating the apple”.

One of the pieces of information is: The monkey who sat on the rock ate

the apple. The OpenRules implementation has a table with a row for each
monkey, which states that if this monkey’s resting place was a rock, their fruit
was an apple (Figure 7a). In other words, for n monkeys, the OpenRules imple-
mentation of this rule requires n lines. Because of quantification, cDMN requires
only one row, regardless of how many monkeys there are (Figure 7b). The Cor-
ticon implementation also uses a similar quantification for this rule.

Another rule states that no two monkeys can have the same resting place or
fruit. In both the Corticon and OpenRules implementations, this is handled by
two tables with a row for each pair of monkeys. The Corticon tables are shown
in Figure 8a. Each row either states that two monkeys have different fruit, or

that they have different place. Therefore, n monkeys require n×(n−1)
2 rows. By

contrast, the cDMN implementation seen in Figure 8b requires only a single row
to express the same.

(a) Corticon

Different Preferences
E* Monkey called m1 Monkey called m2 Place of m1 Fruit of m1

1 — not(m1) not(Place of m2) not(Fruit of m2)

(b) cDMN

Fig. 8: An extract of the Monkey Business implementation in (a) Corticon and
(b) cDMN, defining that no monkeys share fruit and no monkeys share the same
place.

7.3 Optimization

In the Balanced Assignment challenge, 210 employees need to be divided into 12
groups, so that every group is as diverse as possible. The department, location,
gender and title of each employee is known. This is quite a complex problem to
handle in DMN. As such, of the four submitted solutions, only one was DMN-
like: an OpenRules implementation, using external CP/LP solvers. The logic for
these external solvers is written in Java. Although the code is fairly compact, it
cannot be written without prior programming knowledge. Because optimization
is built-in in cDMN, we can solve the problem with two decision tables and one
constraint table. The table Diversity score, shown in Figure 9, adds 1 to the
total diversity score if two similar people are in a different group. Maximizing
this score then results in the most diverse groups.

Diversity score
C+ Person

called p1
Person
called p2

Department
of p1

Location
of p1

Gender
of p1

Title
of p1

Group of p1 Score

1 - - = Department
of p2

- - - not(Group of p2) 1

2 - - - = Location
of p2

- - not(Group of p2) 1

3 - - - - = Gender
of p2

- not(Group of p2) 1

4 - - - - - = Title
of p2

not(Group of p2) 1

Execute
Maximize Score

Fig. 9: The decision tables and constraint table for Balanced Assignment.

7.4 Overview of all challenges

Of the 21 challenges we considered, cDMN is capable of successfully modeling
19. In comparison, there were 12 OpenRules implementations and 12 Corticon
implementations submitted. Note that we have not examined whether Open-
Rules and Corticon might be capable of modeling more challenges than those
for which a solution was submitted.

To compare cDMN to other approaches, we focus on two aspects: quantity
(how big are they?) and quality (how readable and how scalable are they?). The
size of implementations was measured by counting the number of cells used in
all the decision tables. Glossaries, data tables and equivalents thereof were not
included in the count. Table 2 shows that cDMN and Corticon alternate between
having the fewest cells, and that OpenRules usually has the most. In general,
OpenRules implementations require many cells because each cell is very simple.
For instance, even an “=” operator is its own cell. The Corticon implementations,
on the other hand, contain more complex cells, rendering them more compact.

W
h
o

K
il
le

d
A

.?

C
h
a
n
g
e

M
a
k
in

g

A
G

o
o
d

B
u
rg

er

D
efi

n
e

D
u
p
l.

C
o
ll
.

o
f

C
a
rs

M
o
n
k
ey

B
u
si

n
es

s

V
a
ca

ti
o
n

D
ay

s

F
a
m

il
y

R
id

d
le

C
u
st

.
G

re
et

in
g

O
n
li
n
e

D
a
ti

n
g

C
la

ss
.

E
m

p
lo

y
ee

s

R
ei

n
d
ee

r
O

rd
er

Z
o
o
,

B
u
se

s,
K

id
s

B
a
la

n
ce

d
A

ss
ig

n
.

V
a
c.

D
ay

s
A

d
v
.

M
a
p

C
o
lo

ri
n
g

M
a
p

C
o
lo

r
V

io
l.

C
ra

ck
th

e
C

o
d
e

N
u
m

er
ic

a
l

H
a
ik

u

cDMN 53 26 35 20 26 47 38 76 88 45 36 14 24 55 124 21 48 77 41

Corticon 54 14 20 19 45 64 32 22 78 21 64

OpenRules 176 95 21 150 31 205 70 111 43 30 97

Others 761 481 142 343 3704 314

Table 2: Comparison of the number of cells used per implementation. Other
implementations: 1. FEEL, 2. Blueriq, 3. Trisotech, 4. DMN

Because of this, OpenRules implementations are usually easier to read than
their Corticon counterparts. An example comparison between cDMN and Cor-
ticon can be seen in Figure 10a and 10b. Each figure shows a snippet of their
Make a Good Burger implementation, in which the food properties of a burger
are calculated. While the Corticon implementation is more compact, it is less
interpretable, less maintainable and dependent on domain size. If the user wants
to add an ingredient to the burger, complex cells need to be changed. In cDMN,
simply adding the ingredient to the data table suffices.

A comparison between cDMN and OpenRules can be found in Figure 11a and
11b. Here we show a part of their implementations of the Who Killed Agatha?
challenge. They both show a translation of the following rule: “A killer always
hates, and is no richer than his victim.” By using constraints and a constant
(Killer), cDMN allows us to form a more readable and more scalable table. If
the police ever find a fourth suspect, they can easily add the person to the data
table without needing to change anything else.

In Section 3, we identified four different problem properties. We now suggest
that each property is tackled more easily by one or more of the additions cDMN
proposes.

Aggregates needed Figure 10b shows how aggregates are both more read-
able and scalable when using quantification. Moreover, cDMN allows the use of
aggregates for more complex operations such as optimization or defining con-
straints.

(a) Corticon

Determine Nutrition
C+ Item Total Sodium Total Fat Total Calories Total Cost

1 - Number of Item
* Sodium of Item

Number of Item
* Fat of Item

Number of Item
* Calories of Item

Number of Item
* Cost of Item

Nutrition Constraints
E* Total Sodium Total Fat Total Calories

1 <3000 <150 <3000

(b) cDMN

Fig. 10: Calculating the food properties of burger in Corticon and cDMN.

Constraints Constraints can be conveniently modeled by constraint tables,
such as the constraints in Figure 11b, which states that the killer hates Agatha,
but is no richer than her. The addition of constraint tables allows for an obvious
translation from the rule in natural language to the table.

(a) OpenRules
Killer constraints

E* Killer hates Agatha Killer richer than Agatha
1 Yes No

(b) cDMN

Fig. 11: Implementation of “A killer always hates and is no richer than their
victim” in OpenRules and cDMN

Universal quantification Problems which contain universal quantification
can be compactly represented, as can, among others, be seen in Figure 3. This
table states that each person hates less than 3 people.

Optimization Because cDMN directly supports optimization, problems con-
taining this property are easily modeled. Furthermore, by the addition of more
complex data types, optimization can be used in a more flexible manner. An
example can be found in Figure 9.

8 Conclusions

This paper presents an extension to DMN, which is able to solve complex prob-
lems while still maintaining DMN’s level of readability. This extension, which we
call cDMN, adds constraint modeling, more expressive data and quantification.

Constraint modeling allows a user to define a solution space instead of a
single solution. A user can generate a desired number of models, or generate
the model which optimizes the value of a specific term. Unlike DMN, which only
knows constants, cDMN also supports the use of functions and predicates, which
allow for more flexible representations. Together with quantification, this allows
tables to be constructed in a compact and straightforward manner, while being
independent of the size of the problem. This improves readability, maintainability
and scalability of tables.

By comparing our cDMN implementations to the implementations of other
state-of-the-art DMN-like solvers, we can conclude that cDMN succeeds in in-
creasing expressivity while retaining the simplicity of standard DMN.

References

1. Calvanese, D., Montali, M., Dumas, M., Maggi, F.: Semantic dmn: Formalizing and
reasoning about decisions in the presence of background knowledge. Theory and
Practice of Logic Programming 19(4), 536–573 (2019)

2. De Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G., Denecker, M.: Predicate
logic as a modeling language: The idp system. In: Declarative Logic Programming:
Theory, Systems, and Applications, pp. 279–329. ACM Books (2018)

3. Deryck, M., Aerts, B., Vennekens, J.: Adding constraint tables to the dmn standard:
Preliminary results. In: Rules and Reasoning: Third International Joint Conference,
RuleML+RR 2019, Bolzano, Italy, September 16–19, 2019, Proceedings. vol. 11784,
pp. 171–179. Springer (2019)

4. Object Modelling Group: Decision model and notation (2019), http://www.omg.

org/spec/DMN/

5. OpenRules, Inc.: Openrules (2017), http://openrules.com
6. Progress: Corticon (2019), progress.com/corticon
7. Wittocx, J., Mariën, M., Denecker, M.: The idp system: a model expansion system

for an extension of classical logic. In: Proceedings of the 2nd Workshop on Logic
and Search. pp. 153–165. ACCO; Leuven (2008)

http://www.omg.org/spec/DMN/
http://www.omg.org/spec/DMN/
http://openrules.com
progress.com/corticon

	Tackling the DMN Challenges with cDMN: A Tight Integration of DMN and Constraint Reasoning

