
Simon Vandevelde, Bram Aerts,
Joost Vennekens
KU Leuven - EAVISE
30 June 2020

cDMN: Combining DMN
with Constraint Reasoning

DecisionCAMP2020

OUTLINE
1. DMN

2. Constraint DMN

3. cDMN application: Doctor Planning

4. Comparison to other solutions

5. A user friendly pipeline from cDMN to interface

1

1 DMN

DMN

What DMN does well:
• Very readable
• Very intuitive
• Easy to formalize decision making

DMN 3

DMN

However: not well-suited for complex decision making:
• FEEL: can express a lot, but becomes unreadable
• No constraints
• No optimization
→ we propose additions to overcome these limitations.

DMN 3

2 CONSTRAINT
DMN

WHAT IS CDMN?

cDMN: constraint DMN
• Extends DMN with constraint reasoning
• Quantification, types, functions, relations, optimization, ..
• Model complex decisions
• Introduces new tables

- Glossary
- Constraint tables
- Data tables
- Execute tables

Constraint DMN 5

THE GLOSSARY
Changes in representation:
• DMN: constants
• cDMN: types, functions, relations, constants, booleans
→ defined by glossary

Constraint DMN 6

THE GLOSSARY
Changes in representation:
• DMN: constants
• cDMN: types, functions, relations, constants, booleans
→ defined by glossary

For example:
Type

Name Type Values
Person string Agatha, Butler, Charles
Number int [0..100]

Relation
Name
Person hates Person
Person is richer than Person

Boolean
Name
Suicide

Constant
Name Type
Killer Person

Function
Name Type
Age of Person Number
Hatees of Person Number

Constraint DMN 6

https://dmcommunity.org/challenge/challenge-nov-2014/

THE GLOSSARY
Changes in representation:
• DMN: constants
• cDMN: types, functions, relations, constants, booleans
→ defined by glossary

For example:
Type

Name Type Values
Person string Agatha, Butler, Charles
Number int [0..100]

Relation
Name
Person hates Person
Person is richer than Person

Boolean
Name
Suicide

Constant
Name Type
Killer Person

Function
Name Type
Age of Person Number
Hatees of Person Number

Constraint DMN 6

https://dmcommunity.org/challenge/challenge-nov-2014/

THE GLOSSARY
Changes in representation:
• DMN: constants
• cDMN: types, functions, relations, constants, booleans
→ defined by glossary

For example:
Type

Name Type Values
Person string Agatha, Butler, Charles
Number int [0..100]

Relation
Name
Person hates Person
Person is richer than Person

Boolean
Name
Suicide

Constant
Name Type
Killer Person

Function
Name Type
Age of Person Number
Hatees of Person Number

Constraint DMN 6

https://dmcommunity.org/challenge/challenge-nov-2014/

THE GLOSSARY
Changes in representation:
• DMN: constants
• cDMN: types, functions, relations, constants, booleans
→ defined by glossary

For example:
Type

Name Type Values
Person string Agatha, Butler, Charles
Number int [0..100]

Relation
Name
Person hates Person
Person is richer than Person

Boolean
Name
Suicide

Constant
Name Type
Killer Person

Function
Name Type
Age of Person Number
Hatees of Person Number

Constraint DMN 6

https://dmcommunity.org/challenge/challenge-nov-2014/

THE GLOSSARY
Changes in representation:
• DMN: constants
• cDMN: types, functions, relations, constants, booleans
→ defined by glossary

For example:
Type

Name Type Values
Person string Agatha, Butler, Charles
Number int [0..100]

Relation
Name
Person hates Person
Person is richer than Person

Boolean
Name
Suicide

Constant
Name Type
Killer Person

Function
Name Type
Age of Person Number
Hatees of Person Number

Constraint DMN 6

https://dmcommunity.org/challenge/challenge-nov-2014/

CONSTRAINT TABLES

Constraint tables differ in two ways from decision tables:
1 Outputs can contain S-FEEL.
2 Rows express logical implications:

→ IF input satisfied, THEN output has to be satisfied
→ Nothing said about output when no input applicable (no Null)

E* hit policy

Constraint DMN 7

CONSTRAINT TABLES

Constraint tables differ in two ways from decision tables:
1 Outputs can contain S-FEEL.
2 Rows express logical implications:

→ IF input satisfied, THEN output has to be satisfied
→ Nothing said about output when no input applicable (no Null)

E* hit policy
Nutritional values
E* RequireHealthy Total Sodium Total Fat Total Calories

1 Yes <3000 <150 <3000

RequireHealthy ⇒ TotalSodium < 3000 ∧ TotalFat < 150 ∧ TotalCalories < 3000

Constraint DMN 7

QUANTIfiCATION

cDMN also allows universal quantification:
• Logic for all values of a type
• Type as column header
• Subsequent uses refer to the quantified variable.

Constraint DMN 8

CONSTRAINTS AND
QUANTIfiCATION: EXAMPLE

Example:
Noone hates all
E* Person Hatees of Person

1 - < 3

∀Person[Person] : Hatees(Person) < 3

Constraint DMN 9

CONSTRAINTS AND
QUANTIfiCATION: EXAMPLE

Example:
Noone hates all
E* Person Hatees of Person

1 - < 3

∀Person[Person] : Hatees(Person) < 3

Bordering countries can not share colors
E* Country called c1 Country called c2 c1 and c2 are Bordering Color of c1

1 - - Yes Not(Color of c2)

∀c1[Country], c2[Country] : Bordering(c1, c2) ⇒ Color(c1) 6= Color(c2)

Constraint DMN 9

DATA TABLES

Typically, problems can be split up in two parts:
1 general logic of the problem
2 specific problem instance to solve

Constraint DMN 10

DATA TABLES

Typically, problems can be split up in two parts:
1 general logic of the problem
2 specific problem instance to solve

Map coloring problem:

1 Two bordering countries cannot share a color.
2 The specific map to color (e.g. Western Europe).

Constraint DMN 10

https://en.wikipedia.org/wiki/Four_color_theorem

DATA TABLES

Logic: decision and constraint tables
Problem instance: data tables

Constraint DMN 11

DATA TABLES

Logic: decision and constraint tables
Problem instance: data tables
• No hit policy, but "Data Table" in name
• Only basic values
• Quantification possible

Constraint DMN 11

DATA TABLES

Logic: decision and constraint tables
Problem instance: data tables
• No hit policy, but "Data Table" in name
• Only basic values
• Quantification possible

Data Table: Declaring which countries border
Country called c1 Country called c2 c1 and c2 are Bordering

1 Belgium France, Luxembourg, Netherlands, Germany Yes
2 Germany France, Denmark, Luxembourg, Belgium, Netherlands Yes

. Yes

Constraint DMN 11

MODEL SOLVING AND OPTIMIZATION

• DMN always has a single solution for a set of inputs
• not the case in cDMN
→ cDMN defines solution space
• Execute table specifies solutions

Constraint DMN 12

MODEL SOLVING AND OPTIMIZATION

• DMN always has a single solution for a set of inputs
• not the case in cDMN
→ cDMN defines solution space
• Execute table specifies solutions

Execute
Get 1 model

Constraint DMN 12

MODEL SOLVING AND OPTIMIZATION

• DMN always has a single solution for a set of inputs
• not the case in cDMN
→ cDMN defines solution space
• Execute table specifies solutions

Execute
Get 1 model

Execute
Get all models

Constraint DMN 12

MODEL SOLVING AND OPTIMIZATION

• DMN always has a single solution for a set of inputs
• not the case in cDMN
→ cDMN defines solution space
• Execute table specifies solutions

Execute
Get 1 model

Execute
Get all models

Execute
Maximize Score

Constraint DMN 12

3 CDMN
APPLICATION:
DOCTOR
PLANNING

CHALLENGE SPECIfiCATION

Doctor Planning

• Doctor present at all times in a hospital
• Planning made per week
• Days consist of three shifts (early, late, night)
• Five doctors in total
• Each doctor has different availabilities

cDMN application: Doctor Planning 14

CHALLENGE SPECIfiCATION: RULES
Rules

1 A doctor can only work one shift per day.
2 A doctor should always be available for his shift (see

table below).
3 If a doctor has the night shift, they either get the next

day off, or the night shift again.
4 A doctor either works both days of the weekend, or none

of the days.

cDMN application: Doctor Planning 15

CHALLENGE SPECIfiCATION: AVAILABILITIES
Availabilities
Name Available
Fleming Friday, Saturday, Sunday
Freud Every day early or late, never night
Heimlich Every day but never the night shift on weekends
Eustachi Every day, every shift
Golgi Every day, every shift but at max 2 night shifts

A planning should be made in which every requirement is
fullfilled.

cDMN application: Doctor Planning 16

DOCTOR PLANNING: RULES

Rule 1
A doctor can only work one shift per day.

Type
Name Type Values
Doctor string Fleming, Freud, Heimlich, Eustachi, Golgi
Day string Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday
Nb Shift int [0..21]

Function
Name Type
Nb Shifts of Doctor and Day Nb Shift

cDMN application: Doctor Planning 17

DOCTOR PLANNING: RULES

Rule 1
A doctor can only work one shift per day.

Rule 1
E* Doctor Day Nb Shifts of Doctor and Day

1 - - ≤ 1

cDMN application: Doctor Planning 17

DOCTOR PLANNING: RULES

Rule 2
A doctor should be available for his shift.

Type
Name Type Values
Doctor string Fleming, Freud, Heimlich, Eustachi, Golgi
Day string Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday
Nb Shift int [0..21]
Shift_Type string Early, Late, Night

Function
Name Type
Nb Shifts of Doctor and Day Nb Shift
Assigned Doctor of Day and Shift_Type Doctor

Relation
Name
Available Doctor for Shift_Type and Day

cDMN application: Doctor Planning 18

DOCTOR PLANNING: RULES

Rule 2
A doctor should be available for his shift.

Rule 2
E* Doctor Day Shift_Type Assigned Doctor of Day and Shift_Type Available Doctor for Shift_Type and Day

1 - - - Doctor Yes

cDMN application: Doctor Planning 18

DOCTOR PLANNING: RULES
Rule 3
If a doctor has the night shift, they either get the next day off,
or the night shift again.

Type
Name Type Values
Doctor string Fleming, Freud, Heimlich, Eustachi, Golgi
Day string Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday
Nb Shift int [0..21]
Shift_Type string Early, Late, Night

Function
Name Type
Nb Shifts of Doctor and Day Nb Shift
Assigned Doctor of Day and Shift_Type Doctor
Next_Day of Day Day

Relation
Name
Available Doctor for Shift_Type and Day

cDMN application: Doctor Planning 19

DOCTOR PLANNING: RULES
Rule 3
If a doctor has the night shift, they either get the next day off,
or the night shift again.

Rule 3
E* Doctor Day called d1 Shift_Type called s1 Doctor of d1 and s1 Day called d2 Shift_Type called s2 Doctor of d2 and s2

1 - - Night Doctor Next_Day of d1 Early, Late not(Doctor)

cDMN application: Doctor Planning 19

DOCTOR PLANNING: RULES
Rule 4
A doctor either works both days of the weekend, or none of
the days.

Type
Name Type Values
Doctor string Fleming, Freud, Heimlich, Eustachi, Golgi
Day string Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday
Nb Shift int [0..21]
Shift_Type string Early, Late, Night

Function
Name Type
Nb Shifts of Doctor and Day Nb Shift
Assigned Doctor of Day and Shift_Type Doctor
Next_Day of Day Day

Relation
Name
Available Doctor for Shift_Type and Day

cDMN application: Doctor Planning 20

DOCTOR PLANNING: RULES
Rule 4
A doctor either works both days of the weekend, or none of
the days.

Rule 4
E* Doctor Day called d1 Nb Shifts of Doctor and d1 Day called d2 Nb Shifts of Doctor and d2

1 - Saturday 1 Sunday 1
2 - Sunday 1 Saturday 1

cDMN application: Doctor Planning 20

DOCTOR PLANNING: RULES

Special Preference

Golgi works at maximum two nights.
Type

Name Type Values
Doctor string Fleming, Freud, Heimlich, Eustachi, Golgi
Day string Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday
Nb Shift int [0..21]
Shift_Type string Early, Late, Night

Function
Name Type
Nb Shifts of Doctor and Day Nb Shift
Assigned Doctor of Day and Shift_Type Doctor
Next_Day of Day Day
Nb Nights of Doctor Nb Shift

Relation
Name
Available Doctor for Shift_Type and Day

cDMN application: Doctor Planning 21

DOCTOR PLANNING: RULES

Special Preference

Golgi works at maximum two nights.

Max Nights
E* Doctor Nb Nights of Doctor

1 Golgi ≤ 2

cDMN application: Doctor Planning 21

DOCTOR PLANNING: AVAILABILITIES

Data Table: Availabilities
Doctor Shift_Type Day_Type Available Doctor for Shift_Type and Day

1 Fleming Early Friday Yes
2 Fleming Late Friday Yes
3 Fleming Night Friday Yes
4 Fleming Early Saturday Yes

.

cDMN application: Doctor Planning 22

DOCTOR PLANNING: OTHER TABLES
Next Day
U Day Next_Day of Day
1 Sunday Monday
2 Monday Tuesday
3 Tuesday Wednesday
4 Wednesday Thursday
5 Thursday Friday
6 Friday Saturday
7 Saturday Sunday

cDMN application: Doctor Planning 23

DOCTOR PLANNING: OTHER TABLES
Next Day
U Day Next_Day of Day
1 Sunday Monday
2 Monday Tuesday
3 Tuesday Wednesday
4 Wednesday Thursday
5 Thursday Friday
6 Friday Saturday
7 Saturday Sunday

Count shifts per day
C+ Doctor Day Shift_Type Assigned Doctor of Day and Shift_Type Nb Shifts of Doctor and Day

1 - - - Doctor 1

cDMN application: Doctor Planning 23

DOCTOR PLANNING: OTHER TABLES
Next Day
U Day Next_Day of Day
1 Sunday Monday
2 Monday Tuesday
3 Tuesday Wednesday
4 Wednesday Thursday
5 Thursday Friday
6 Friday Saturday
7 Saturday Sunday

Count shifts per day
C+ Doctor Day Shift_Type Assigned Doctor of Day and Shift_Type Nb Shifts of Doctor and Day

1 - - - Doctor 1

Count night shifts for every doctor
C+ Doctor Day Shift_Type Assigned Doctor of Day and Shift_Type Nb Nights of Doctor

1 - - Night Doctor 1

cDMN application: Doctor Planning 23

DOCTOR PLANNING: FULL

cDMN application: Doctor Planning 24

4 COMPARISON
TO OTHER
SOLUTIONS

COMPARISON

On 10th of June, these were the solutions:
• OPL (Alex Fleisher)
• PostgreSQL (Damir Sudarevic)
• ZIMPL (Rob Parker)
• Prolog (Matteo Redaelli)
• OpenRules, JavaSolver, AWS Lambda (Jacob Feldman)

None are DMN-like implementations.

Comparison to other solutions 26

https://dmcommunity.org/challenge/challenge-apr-2020/
https://dmcommunity.files.wordpress.com/2020/04/challenge2020april.opl_.alexfleischer-1.pdf
https://www.damirsystems.com/shift-scheduling/
https://dmcommunity.files.wordpress.com/2020/04/challenge2020april.zimpl_.robparker.pdf
http://www.redaelli.org/matteo-blog/2020/04/22/doctor-planning-resolved-with-prolog/
https://openrules.wordpress.com/2020/04/22/building-a-live-worker-scheduler/

COMPARISON

OPL:

Comparison to other solutions 26

COMPARISON

ZIMPL:

Comparison to other solutions 26

COMPARISON

OpenRules, JavaSolver, AWS Lambda:

Comparison to other solutions 26

COMPARISON

OpenRules, JavaSolver, AWS Lambda:

Comparison to other solutions 26

LIVE WORKER SCHEDULER

Jacob Feldman created a full-blown planning application
• The GUI is created using OpenRules Dialog
• The scheduling is implemented in JavaSolver
+ The GUI is very intuitive and the system works well
- The solver is written in Java, only accessible to software
developers

Comparison to other solutions 27

5 A USER FRIENDLY
PIPELINE FROM
CDMN TO
INTERFACE

AUTOCONfiG INTERFACE

Using the cDMN solver, a cDMN specification can be fed to
the Autoconfig interface
• Users can interact with the cDMN specifications
• Users can set values, and see the results
• The system doesn’t distinguish between inputs or

outputs
• The system can find optimal solutions

A user friendly pipeline from cDMN to interface 29

AUTOCONfiG INTERFACE DEMO

A user friendly pipeline from cDMN to interface 30

https://libre.video/videos/watch/638c61c3-2e06-4e73-92f8-b9745c9fb8a6

Thank you for your attention.

ANY QUESTIONS?

For further questions or discussion:
s.vandevelde@kuleuven.be

For more information on cDMN and the cDMN solver:
www.cdmn.be

For more information on the interface:
https://gitlab.com/krr/autoconfigz3

A user friendly pipeline from cDMN to interface 32

s.vandevelde@kuleuven.be
www.cdmn.be
https://gitlab.com/krr/autoconfigz3

	DMN
	Constraint DMN
	cDMN application: Doctor Planning
	Comparison to other solutions
	A user friendly pipeline from cDMN to interface

