@eavise

衒

Unlocking the Full Potential of DMN DecisionCAMP2021

Simon Vandevelde, Joost Vennekens KU Leuven - EAVISE 15 September 2021

KU LEUVEN

WHAT THIS PRESENTATION IS

Unlocking the Full Potential of DMN

... a bit click-baity

WHAT THIS PRESENTATION IS

Different ways to apply the knowledge in DMN models

GOAL OF THE PRESENTATION

Goal

Show that DMN can be used in many more ways

\rightarrow by deviating from the "standard" approach used with DMN

- 1. DMN: now
- 2. Execution methods
- 3. Alternative Execution Methods
- 4. Practical systems
- 5. Conclusion

DMN: NOW

Lifetime of DMN models:

- Creation of the model
- Execution of the model

Much research interest goes to creation!

DMN: CREATION

Creation topics:

- ...

- "Knowledge Acquisition"
 - Domain expert
 - Decision mining
- Modeling methodologies
- Verification & Validation
 - Automated testing

. . .

DMN: EXECUTION

Execution topics:

- Interaction with DMN
 - Chat bots
 - Microservices
 - "Traceability"
 - . . .
- Efficiency of execution
- Execution methods

EXECUTION METHODS

CURRENT EXECUTION METHODS

Some of the current execution methods:

- The standard: bottom-to-top execution
- Reasoning on sub-decisions
- "Wildcard mode"

Воттом-то-тор

"The standard approach", works in three steps:

- 1 Start at bottom inputs
- 2 Evaluate tables one by one
- 3 Finish at top decisions

BOTTOM-TO-TOP: EXAMPLE

Risk	Risk Level					
U	BMILevel	Sex	Waist	RiskLevel		
1	Normal	-	-	Low		
2	Underweight	-	-	High		
3	Overweight	Male	≤ 102	Increased		
4	Overweight	Male	> 102	High		
5	Overweight	Female	≤ 88	Increased		
6	Overweight	Female	> 88	High		
7	Obese	Male	≤ 102	High		
8	Obese	Male	> 102	Very High		
9	Obese	Female	≤ 88	High		
10	Obese	Female	> 88	Very High		

BMI	Level	
U	BMI	BMILevel
1	< 18.5	Underweight
2	[18.525]	Normal
3	(2530]	Overweight
4	> 30	Obese

BM			
U	Weight	Length	BMI
1	-	-	Weight/(Length*Length)

Execution methods

BOTTOM-TO-TOP: EXAMPLE

hen she always was table, watchad his I wondered what he low and administion reword the fact that the his gran English or the meritament of rearry, but I thought in failed to relash he

Four inputs:

- Weight
- Length
- Sex
- Waist
- $\rightarrow \textbf{RiskLevel}$

Risk				
U	BMILevel	Sex	Waist	RiskLevel
1	Normal	-	-	Low
2	Underweight	-	-	High
3	Overweight	Male	≤ 102	Increased
4	Overweight	Male	> 102	High
5	Overweight	Female	≤ 88	Increased
6	Overweight	Female	> 88	High
7	Obese	Male	≤ 102	High
8	Obese	Male	> 102	Very High
9	Obese	Female	≤ 88	High
10	Obese	Female	> 88	Very High

BM	I Level	
U	BMI	BMILevel
1	< 18.5	Underweight
2	[18.525]	Normal
3	(2530]	Overweight
4	> 30	Obese

BMI			
U	Weight	Length	BMI
1	-	-	Weight/(Length*Length)

BOTTOM-TO-TOP: EXAMPLE

bein alter adwayes was, tablie, watchied hie twontdered what he twontdered what is twontdered what is the grave Eaglah e the excitament of e many but I thought or failed to reliab ha

Male, 90kg, 1.79m, Waist = 100cm:

1 **BMI**

ightarrow 28

- 2 BMILevel \rightarrow Overweight
- 3 RiskLevel \rightarrow Increased

Risk				
U	BMILevel	Sex	Waist	RiskLevel
1	Normal	-	-	Low
2	Underweight	-	-	High
3	Overweight	Male	≤ 102	Increased
4	Overweight	Male	> 102	High
5	Overweight	Female	≤ 88	Increased
6	Overweight	Female	> 88	High
7	Obese	Male	≤ 102	High
8	Obese	Male	> 102	Very High
9	Obese	Female	≤ 88	High
10	Obese	Female	> 88	Very High

BMI	Level	
U	BMI	BMILevel
1	< 18.5	Underweight
2	[18.525]	Normal
3	(2530]	Overweight
4	> 30	Obese

BMI			
U	Weight	Length	BMI
1	-	-	Weight/(Length*Length)

SUB-DECISION

- Only interested in a subsection of the model
- However, for bottom-to-top, all inputs are needed
- Solution: reasoning on sub-decision
- E.g., evaluating a single table at a time

SUB-DECISION: EXAMPLE

them she always was to table, watched his - I wondered what he is one and admiration a research the fact that with his gree English for the stratement of or wave, hurt I through one failure a sec-

Inputs for BMILevel

- Weight
- Length

OR

• BMI

RISK				
U	BMILevel	Sex	Waist	RiskLevel
1	Normal	-	-	Low
2	Underweight	-	-	High
3	Overweight	Male	≤ 102	Increased
4	Overweight	Male	> 102	High
5	Overweight	Female	≤ 88	Increased
6	Overweight	Female	> 88	High
7	Obese	Male	≤ 102	High
8	Obese	Male	> 102	Very High
9	Obese	Female	≤ 88	High
10	Obese	Female	> 88	Very High

BMI	Level	
U	BMI	BMILevel
1	< 18.5	Underweight
2	[18.525]	Normal
3	(2530]	Overweight
4	> 30	Obese

BMI			
U	Weight	Length	BMI
1	-	-	Weight/(Length*Length)

Execution methods

WILDCARD MODE

- Reason on partial information
- Set unknown inputs as "wildcard"
- System outputs all possible outcomes
- Supported by Signavio and Camunda

WILDCARD MODE: EXAMPLE

them also always was a table, watched his I wontered what he lowe and admiration a reserve the fact that with his grow English for the excitament of or ware, but I thought and failed to reliab he

90kg, 1.79m, Waist = 100cm, *Sex* unknown

- RiskLevel
 - $\begin{array}{l} \rightarrow \text{Increased} \\ \rightarrow \text{High} \end{array}$

RISK				
U	BMILevel	Sex	Waist	RiskLevel
1	Normal	-	-	Low
2	Underweight	-	-	High
3	Overweight	Male	≤ 102	Increased
4	Overweight	Male	> 102	High
5	Overweight	Female	≤ 88	Increased
6	Overweight	Female	> 88	High
7	Obese	Male	≤ 102	High
8	Obese	Male	> 102	Very High
9	Obese	Female	≤ 88	High
10	Obese	Female	> 88	Very High

BMI	Level	
U	BMI	BMILevel
1	< 18.5	Underweight
2	[18.525]	Normal
3	(2530]	Overweight
4	> 30	Obese

BMI			
U	Weight	Length	BMI
1	-	-	Weight/(Length*Length)

ALTERNATIVE

EXECUTION

MULTIDIRECTIONAL REASONING: EXAMPLE

- We have calculated BMILevel = Overweight
- Logical next question:
 - "What should weight be for healthy BMI?"
- Easy solution: guess until you find correct answer
 - Only easy for small models
 - Never 100% precise
- $\rightarrow\,$ Apply DMN model "in reverse"!

MULTIDIRECTIONAL REASONING: EXAMPLE

note: only shown as example, this is not actually correct.

Multidirectional Reasoning: DRD

- Actually, no need to change DRD
- DRD does not show execution flow!
- Rather, the order of definitions

MULTIDIRECTIONAL REASONING

Re-using DMN in different directions:

- Endless new uses for model
- Re-use existing knowledge
- Easy answer for hypothetical "but-now-what" questions
- \rightarrow But how do we do it practically?

the next leaving law

ten also alwayn war failin, watchod ha lwondorod what h over and administration researt the fact that th his gross Registi e the excitament of surrey but 1 through in failed to reliab ha

In theory: *simply* reverse DMN tables In practice:

BMI	Level	
U	BMI	BMILevel
1	< 18.5	Underweight
2	[18.525]	Normal
3	(2530]	Overweight
4	> 30	Obese

BMI			
U	Weight	Length	BMI
1	-	-	Weight/(Length*Length)

BMI	Level	
U	BMILevel	BMI
1	Underweight	< 18.5
2	Normal	[18.525]
3	Overweight	(2530]
4	Obese	> 30

BMI			
U	BMI	Length	Weight
1	-	-	BMI*Length*Length

note: this is not actually correct, as it changes the semantics of the model

the next leaving be-

them also always was a table, watched his I wondered what he have and admiration research the fact that with his gran Englast for the excitoment of restrict part I through an failed to reliab his

In theory: *simply* reverse DMN tables In practice:

Output can now be:

- Range
- List of elements
- "—"?

BMI Level		
U	BMILevel	BMI
1	Underweight	< 18.5
2	Normal	[18.525]
3	Overweight	(2530]
4	Obese	> 30

BMI			
U	BMI	Length	Weight
1	-	-	BMI*Length*Length

note: this is not actually correct, as it changes the semantics of the model

the ann, knowing her

here also always was table, watched his I wondered what he lowe and admiration rement the fact that the fact the fact that the provident of the part of the excitament of r stars; but I through the no failed to reliab he

In theory: *simply* reverse DMN tables In practice:

$\begin{array}{l} \text{Output can now be:} \\ \rightarrow \text{ constraints!} \\ \rightarrow \text{ not DMN compliant!} \end{array}$

BMI Level		
U	BMILevel	BMI
1	Underweight	< 18.5
2	Normal	[18.525]
3	Overweight	(2530]
4	Obese	> 30

BMI			
U	BMI	Length	Weight
1	-	-	BMI*Length*Length

note: this is not actually correct, as it changes the semantics of the model

In the case of range or list:

- Multiple solutions possible
- Any solution is equally correct
- Value of variables can be enumerations

ten alter allverges was tablie, watchool his I wendered what he reveated administration research the fact that the his grow English if the excitations of r many, but I through an failed to reliab his

1.79m & Normal BMILevel: \rightarrow BMI = [18.5..25] \rightarrow Weight = [59..80]kg

BMI	Level	
U	BMILevel	BMI
1	Underweight	< 18.5
2	Normal	[18.525]
3	Overweight	(2530]
4	Obese	> 30

BMI			
U	BMI	Length	Weight
1	-	-	BMI*Length*Length

MULTIDIRECTIONAL REASONING

We can do more than "reasoning in reverse"! \rightarrow we can reason from any variables to any other

... just not always meaningful

MULTIDIRECTIONAL REASONING: OTHER EXAMPLES

- E.g. consider DMN to calculate pension based on age, worked years, ...
- \rightarrow "When can I retire if I want an income of x per month?"
- A ticket price calculator for traveling to place x: \rightarrow "At what time will the ticket be cheapest?"

MULTIDIRECTIONAL REASONING: OTHER EXAMPLES

In a system to check eligibility for bonuses: \rightarrow "What can I do to gain more bonuses?"

In the case of loans & interests: \rightarrow "What should I do to have interest rate of 1%?"

OPTIMIZATION

In BMI example, we asked:

What should my weight be in order to be healthy?

But actually, we ask the following:

What is the highest weight I can have in order to be healthy?

 \rightarrow Optimization!

OPTIMIZATION

1.79m & Normal BMILevel: $\rightarrow BMI = [18.5..25]$ $\rightarrow Weight = [59..80]$ kg Max: 80kg Min: 59kg

BMI Level		
U	BMILevel	BMI
1	Underweight	< 18.5
2	Normal	[18.525]
3	Overweight	(2530]
4	Obese	> 30

BMI			
U	BMI	Length	Weight
1	-	-	BMI*Length*Length

Relevance

Sometimes, variables might not be relevant

E.g. if *BMILevel* = *Normal* \rightarrow *Sex* and *Waist* irrelevant

Risk Level				
U	BMILevel	Sex	Waist	RiskLevel
1	Normal	-	-	Low
2	Underweight	—	-	High
3	Overweight	Male	≤ 102	Increased
4	Overweight	Male	> 102	High
5	Overweight	Female	≤ 88	Increased
6	Overweight	Female	> 88	High
7	Obese	Male	≤ 102	High
8	Obese	Male	> 102	Very High
9	Obese	Female	≤ 88	High
10	Obese	Female	> 88	Very High

Relevance

Sometimes, variables might not be relevant

I.e., if $BMI \le 25$ \rightarrow no need for Sex or Waist

Risk Level				
U	BMILevel	Sex	Waist	RiskLevel
1	Normal	-	-	Low
2	Underweight	—	-	High
3	Overweight	Male	≤ 102	Increased
4	Overweight	Male	> 102	High
5	Overweight	Female	≤ 88	Increased
6	Overweight	Female	> 88	High
7	Obese	Male	≤ 102	High
8	Obese	Male	> 102	Very High
9	Obese	Female	≤ 88	High
10	Obese	Female	> 88	Very High

PRACTICAL SYSTEMS

IMPLEMENTATION

How to implement these novel execution methods?

- \rightarrow we can't use current execution engines
- \rightarrow "reversing" a model is not DMN-compliant!
- \rightarrow How to best deal with constraints?

Solution:

Use a constraint solver!

IMPLEMENTATION EXAMPLES

Two applications supporting our execution approach:

- DMN-IDP: combines DMN with Knowledge-Based AI in interface
- DMN-IDPy: similar, but in form of Python API

 \rightarrow Both use the KU Leuven's IDP system 1 as constraint solver

¹https://dtai.cs.kuleuven.be/software/idp

Combines DMN editor with our IDP-based interface²

- DMN models are translated into IDP knowledge base
- Interface supports:
 - bottom-to-top
 - multidirectional reasoning
 - optimization
 - reasoning on incomplete information

¹ Vandevelde, Simon, and Joost Vennekens. 2020. 'A Multifunctional, Interactive DMN Decision Modelling Tool'.

² Carbonnelle, Pierre, Bram Aerts, Marjolein Deryck, Joost Vennekens, and Marc Denecker. 2019. 'An Interactive Consultant'.

DMN-IDP: DEMO

Modelexpand

Help 🔻

ten alloc adways wastable, wratched his twondored what he over and admiration resent the fact that th his gran English r the excitation of water, but I thought in failed to reliab his

DMN-IDP

riskLevel 00 sex = length = \sim riskLevel = \sim BMILevel = 00 0 \sim waist = × riskLevel = High \sim X riskLevel = Very High <> 00 00 bmi = weight = 0 X riskLevel = Increased × riskLevel = Extremely High × riskLevel = Low

Reset

Practical systems

DMN File 🔻

Edit DMN

Edit BK

View IDP

View 🔻

$\mathsf{DMN}-\mathsf{IDPY}^1$

Similar to DMN-IDP, but in API form

- Load DMN xml in Python
- Features:
 - bottom-to-top
 - reasoning on incomplete information
 - relevance
 - multidirectional reasoning
 - querying if a variable is "known"
 - querying variable type and possible values
 - optimization

¹ Vandevelde, Simon, Vedavyas, Etikala, Vanthienen, Jan, Vennekens, Joost. 2021 "Leveraging the Power of IDP with the Flexibility of DMN: a Multifunctional API". Proceedings of RuleML+RR21.

DMN-IDPY: DEMO

```
# Import the API (This might take some time)
from cdmn.API import DMN
spec = DMN(path='./DMN/BMILevel_paper.dmn', auto_propagate=True)
```

```
variables = spec.get_outputs() + spec.get_intermediary() # We won't be calculating inputs
requested_variable = input('Which variable would you like to calculate? ()\n>'.format(variables))
```

print('Calculated value for {}:\n{}'.format(requested_variable, spec.value_of(requested_variable)))

DMN-BASED AI?

Can DMN be used as knowledge base for symbolic AI?

- user-friendly
- readable
- sufficiently expressive
- \rightarrow but current execution methods are limited

Imagine a cobot

- Assembly line for product *x*
- Cobot and operator work together
- Cobot has a preset procedures

Y	$\overline{\nabla}$	
0		
\cdots	\cdots	

Icons made by Freepik from www.flaticon.com

Imagine a cobot

- "Screw in y"
- "Verify weld line quality"
- "Give operator screwdriver if z happens"

Icons made by Freepik from www.flaticon.com

Imagine a cobot

- This can likely be expressed in one model
- But does standard functionality suffice?

Icons made by Freepik from www.flaticon.com

Imagine a cobot

- Perform task-by-task: sub-decision
- "Find all situations x in which the robot will turn past the operator": multidirectional
- Only turn on necessary sensors: relevancy

Icons made by Freepik from www.flaticon.com

Imagine a cobot

- How to prepare for procedure *y*?: multidirectional
- Use optimal number of screws: optimize

Icons made by Freepik from www.flaticon.com

Practical systems

. . .

CONCLUSION

CONCLUSION

- We can do more with DMN, without changing it!
- By adding support for more flexible execution
 - reasoning on incomplete information
 - multidirectional reasoning
 - optimization
 - "wildcard"
- A single model can have multiple purposes!
- Huge potential in combination with AI

Thank you for your attention.

ANY QUESTIONS?

For further questions or discussion: s.vandevelde@kuleuven.be