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Preface

In 2019, I finished my studies at KU Leuven De Nayer campus and became
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Joost. Thanks for offering me the chance to start a PhD, and for guiding me
throughout. A big thank you also goes out to the members of my examination
committee for their valuable feedback during my PhD trajectory. This research
would also not have been possible without the Flemish Government, who funded
it under the “Onderzoeksprogramma Artificiële Intelligentie (AI)” programme.

I would also like to thank the many colleagues at EAVISE, DTAI and LIRIS
that I interacted with, with a specific mention for the colleagues in our C204
office. Of course, I also cannot forget those colleagues that wrote a song about
me (merci Laurent!1).

Throughout the thesis, I also use many diagrams and images that have been
created for me by others. Astrid, thank you for the beautiful cover page, and for
prettifying my (very) ugly diagrams. Kaat, thank you for contributing the lovely
robot drawings for FOLL-E. Lastly, Sari, thank you for your amazing digital
drawing of my face just so that I could embellish my chapter introductions. :-)

Lastly, I express my gratitude collectively to all those who have been a part
of my personal life, providing support, love, and understanding. Each person
has played a unique role in shaping the person I am today, and for that, I am
forever thankful.

1https://suicidopolis.bandcamp.com/track/song-for-simon – if you read a page of this
thesis every 56 seconds, you can listen to it 45 times!
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While I am sad that my PhD track is over, I am incredibly grateful for the
experiences I got. :-)



Abstract

Knowledge Representation and Reasoning (KRR) is a sub-field of AI in which
we model (a part of) the world in a declarative Knowledge Base (KB), so that
computers can “reason” on it. The process of constructing such a KB typically
starts with a knowledge extraction phase, in which an AI expert obtains the
required knowledge from a domain expert. This “knowledge transfer” is often
regarded as a costly, time-consuming, and error-prone process. One approach
to facilitate the process is by helping the domain expert understand the KB:
in this way, they can interpret and validate the knowledge, and in some cases,
formalize it themselves.

In this thesis, we investigate how to make knowledge representation (KR) easier
for domain experts by looking into user-friendly formalisms. First, we draw
inspiration from two industry standards, DMN and Feature Modelling, and show
that they are well-suited for KR. Not only are they designed to be user-friendly,
our knowledge-based approach also allows us to repurpose the knowledge in
a DMN model or feature diagram, which enables us to apply them to more
problems than originally intended. In this way, these intuitive formalisms can
be used to model and solve various real-life problems.

While DMN’s simplicity and deterministic nature are some of its main benefits,
there are also cases in which it is not sufficiently expressive. To this end, we
introduce two extensions, cDMN and pDMN, which respectively extend DMN
with constraint reasoning and with probabilistic reasoning. The idea is that
by using DMN as a foundation, we can effectively extend the expressiveness
while still maintaining the intuitive format of the original. We show for both
notations that they are meaningful extensions which allow modelling new types
of problems in a user-friendly way.

To further support the creation of KB’s using DMN, we looked at improving
DMN verification mechanisms. When modelling any KB, it is often a good
idea to regularly check its correctness. For DMN however, we found the
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state-of-the-art verification capabilities lacking. To overcome this, we present a
knowledge-based approach for verification, and we show that it is more thorough
than any other tool.

Throughout the course of this PhD, we have also worked on a use case concerning
a decision support tool for adhesive selection. The main goal of this use case is
to apply and evaluate our approaches. Through qualitative interviews with the
domain experts, we gauge their opinions on our knowledge-based approach. In
short, they appreciate the explainable and interactive nature of our tools, and
are happy with the progress.

To better guide future research on formalisms, we additionally hold multiple
qualitative interviews with modelling experts. The main goal of these interviews
is to elucidate their modelling intuitions and instincts, and to discuss concepts
such as “user-friendliness”. Here, we learn many intricate details of their
modelling process, such as the crucial role of tooling and their KISS (Keep It
Simple, Stupid) approach.

Lastly, we present an “extreme” example of a user-friendly formalism as part of
a tool to teach children First Order Logic (FOL). While FOL plays an important
role in many fields, there is little research around teaching it at elementary school
level. To address this gap, we created FOLL-E: a fun and engaging environment
in which children can freely experiment with FOL. Through multiple workshops
with children, we have found that children enjoy playing around with it, stating
that it is intuitive and inviting.

Summarized, our work looks into simplifying KB creation for non-AI experts.
By using tried and tested notations such as DMN and feature modelling, we
can ensure that they are user-friendly. Moreover, even if such a notation is
not sufficiently expressive, they still form an excellent foundation to build
an extension on top of. When combined with proper tooling support, such
formalisms significantly lower the threshold for non-AI experts to build their
own KBs.



Beknopte samenvatting

Kennisrepresentatie en redeneren (KRR) is een onderdeel van AI waarin we
(een deel van) de wereld modelleren als een declaratieve kennisbank (KB),
zodat computersystemen hierover kunnen “redeneren”. Om zo’n KB te maken
starten we typisch met “kennisextractie”, waarbij een AI expert kennis over een
probleemdomein verkrijgt van een domeinexpert. Dit proces wordt aanzien als
kostelijk, tijdrovend, en zeer kwetsbaar voor fouten. Een mogelijke manier om
dit proces makkelijker te maken is het opleiden van de domeinexperten om de
KB zelf te begrijpen: op deze manier kunnen ze de kennis zelf interpreteren en
valideren. Sterker nog, in sommige gevallen zullen ze zelfs in staat zijn om hun
eigen kennis te formaliseren.

In deze thesis gaan we na hoe we kennisrepresentatien (KR) toegankelijker
kunnen maken voor domeinexperten met behulp van gebruiksvriendelijke
formalismen. Om te beginnen halen we de mosterd bij twee industriestandaarden,
namelijk DMN en Feature Modelling, en tonen we aan dat beide formalismen
zich goed verlenen tot KR. Deze formalismen zijn niet enkel gemakkelijk in
gebruik, maar ze zijn ook bruikbaar voor meer problemen dan oorspronkelijk
bedoeld, dankzij onze kennisgebaseerde aanpak.

Hoewel eenduidigheid een van DMN’s voornaamste troeven is, zijn er toch
gevallen waarin we tegen expressiviteitslimieten lopen. Om dit te overwinnen
introduceren we twee uitbreidingen: cDMN, welke “constraint reasoning”
toevoegt, en pDMN, welke “probabilistic reasoning” toevoegt. In beide gevallen
is het basisidee om DMN te gebruiken als toegankelijk fundament dat we
uitbreiden met meer expressiviteit. We tonen voor beide notaties aan dat ze
nuttige uitbreidingen vormen dat elk op hun beurt nieuwe types van problemen
kunnen aanpakken op een gebruiksvriendelijke manier.

Om verder het gebruik van DMN als KR-formalisme te ondersteunen, hebben
we ook diens verificatiemechanismen onder de loep genomen. Wanneer we een
KB modelleren is het namelijk altijd een goed idee om deze frequent te verifiëren.
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Echter, de huidige verificatiemechanismen laten in onze ogen nog steken vallen.
Om dit op te lossen stellen we onze eigen kennisgebaseerde verificatie-aanpak
voor, en tonen we dat het grondiger werkt dan eenieder andere aanpak.

Doorheen het doctoraat hebben we verder aan een kennisgebaseerd beslissings-
systeem voor lijmselectie gewerkt. Het voornaamste doel hiervan was om onze
aanpak te testen en te evalueren op een probleem van realistische schaal. Aan
de hand van qualitatieve interviews met de domeinexperten proberen we hun
ervaringen te achterhalen. De voornaamste bevindingen hierbij zijn dat ze de
verklaarbaarheid en interactiviteit van onze aanpak ten sterkste waarderen, en
dat ze dan ook tevreden zijn met de vooruitgang tot dusver.

Om toekomstig onderzoek over formalismen beter te sturen hebben we ook
modelleerexperten bevraagd via qualitatieve interviews. Het voornaamste
doel hiervan is om hun modelleerinstincten en -intuities te achterhalen, en
om concepten zoals “gebruiksvriendelijkheid” te bespreken. Hierdoor leren
we veel details over hun modelleerprocessen, zoals de belangrijke rol van een
model-ontwikkelingomgeving en het KISS principe (Keep It Simple, Stupid).

Tot slot presenteren we een “extreme” vorm van een gebruiksvriendelijk
formalisme in de vorm van een applicatie om eerste-orde logica aan te leren aan
kinderen. Hoewel eerste-orde logica een belangrijke rol speelt in verscheidene
velden is er weinig onderzoek omtrent het aanleren ervan aan kinderen. Om
hier een oplossing voor te bieden hebben wij FOLL-E gemaakt: een interactieve
applicatie waarin kinderen vrij kunnen experimenteren met eerste-orde logica.
Aan de hand van meerdere workshops hebben we reeds bevonden dat kinderen
zich effectief amuseren met FOLL-E, en dat de applicatie uitnodigend en intuïtief
werkt.

Samengevat gaat deze thesis over het vergemakkelijken van KB-creatie door
niet-AI experten. Door reeds bestaande notaties als DMN en Feature Modelling
te gebruiken zijn we verzekerd over hun gebruiksvriendelijkheid. Bovendien, in
het geval dat zulke notatie niet expressief genoeg zou zijn, vormen ze alsnog
een uitstekende basis om op verder te bouwen. Wanneer we dit combineren met
een goed uitgeruste ontwikkelingsomgeving wordt het maken van kennisbanken
toegankelijker te maken voor niet-AI experten.
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Chapter 1

Introduction

1.1 Background

In today’s computer age, we see a mass trend towards computer-based
automation. Entire industries abound with processes that are currently
performed manually or are based on inefficient software. Here, effective software
solutions promise an enormous gain in performance, freeing up employees to
focus on more important aspects of their work.

This automation trend has recently been accelerated further by the sudden
explosion of interest in “Artificial Intelligence”. For many companies, AI almost
seems inescapable, as they find themselves in an “adapt or die” situation. Yet,
there are problems for which AI-based automation might seem infeasible, such as
when an expert should remain in the loop, or when explainability and trust are
of high importance. Here, knowledge-based AI might be the key: by explicitly
representing knowledge on a problem domain, we can build computer programs
to support human experts in an explainable way.

1.2 Knowledge Representation & Reasoning and
the Knowledge Base Paradigm

Knowledge Representation and Reasoning (KRR) is a sub-field of Artificial
Intelligence (AI), in which the goal is to model (a part of) the world in a
symbolic representation so that computers can “reason” on it. In doing so, these

1



2 INTRODUCTION

Figure 1.1: Diagram of the Knowledge Base Paradigm

computers can solve complex tasks “like a human would”, by reasoning on our
own knowledge.

The field of KRR contains many different approaches, each with their own unique
characteristics and strengths. One of these approaches is the Knowledge Base
Paradigm (KBP) [44], which distinguishes itself from the others by “returning
to the classical view of logic as a formal language to express pure knowledge
in a declarative way” [35]. The main idea of the KBP is as follows: knowledge
is stored in a knowledge base (KB), independent of its intended use, so that
different forms of inference can be applied in order to solve different problems.
The key aspect here is solving different problems using the same KB, without
requiring modifications. This KB contains a purely declarative representation
of a problem domain – it does not describe how to solve a specific problem, but
rather what the domain looks like. It is then up to a general reasoning engine
to put this knowledge to use, e.g., by generating possible solutions or deriving
consequences, as shown in Fig. 1.1. The main benefits of this approach are
four-fold.

Natural representation As the knowledge base does not contain an algorithmic
description of how to solve a problem, but rather a description of the problem
itself, it is more intuitive to express knowledge on a problem. Expressing
knowledge in the KBP leads to formulas that are more closely aligned to our
natural intuitions, making them easier to understand and write.

Flexible Problems in the real world are not static – they change over time,
thereby varying in size and complexity. Ideally, software should be able to
adapt to these changes with a minimal number of modifications. Consider
for example a snippet of law text describing a person’s eligibility for social
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assistance and how to calculate their total benefits. Such law is typically
subject to frequent change, and any software tools dealing with social assistance
need to be updated accordingly each time. In traditional computer programs,
knowledge on a problem is usually “scattered” in the code base, making it
rigid and tough to update. In the KBP on the other hand, the knowledge is
represented crisply, “as-is”, and is therefore typically straightforward to modify.
Indeed, to incorporate any changes to the law we would only need to update the
relevant snippets in the KB; the functionality of the reasoning engine remains
the same.

Quick to build In general, the KBP lends itself well to building prototypes
relatively quickly. This is due to the fact that we only need to focus on
representing the problem domain, and not worry about the solving; this is
“off-loaded” to the reasoning engine. One downside of using a general reasoning
engine however is that its solving time for a specific problem is typically higher
than that of an optimized algorithm. At the same time, there are cases in
which development time is more costly than runtime: designing an optimized
algorithm takes a lot of time and effort, whereas building a KB typically requires
a fraction of the time.

Explainable Explainable AI is currently a hot topic in computer science, as
many (data-based) AI approaches function as black boxes that cannot elaborate
on why an output was produced. Yet, explainability is important: the people
that experience the impact of an AI-based decision will, of course, want to know
why a decision was made. Such research on explainable AI ties in nicely with
other topics such as fair and ethical AI, especially when considering problem
domains with sensitive information. AI systems that follow the KBP will always
be explainable, as the knowledge on which the system reasons is explicitly
present. In other words, it is possible to trace back the outputs of a decision and
highlight the relevant knowledge; in fact, the reasoning engine can most likely
perform this operation automatically. This explainability increases trust in the
system. Though, it should be noted that explainable does not necessarily entail
understandable – it is possible that laymen do not understand an explanation
due to a lack of knowledge on the logic formalism. However, it is certainly
understandable to the experts who built the system, which is a major benefit
w.r.t. validation.

Of course, every rose has its thorns: as with any approach, there are also some
disadvantages linked to the KBP. For example, as mentioned, the computational
efficiency of tools following the KBP philosophy is typically lower than that of
tools built to solve specific problems. However, an arguably bigger downside of
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the KBP (and of KRR in general) is the “knowledge acquisition” bottleneck.
Knowledge acquisition is the process of condensing real-life knowledge (from
one or more experts) into a formal representation, and it is sometimes regarded
as the most difficult part of creating knowledge-based tools. There are a few
reasons for this difficulty. Firstly, the knowledge an expert has is tacit, and
often difficult to put into words; they frequently make assumptions internally,
and forget to explain them. Secondly, because the domain expert is not an AI
expert (i.e., they cannot formalize their own knowledge), a “knowledge engineer”
is needed. Communication between the former and the latter is error-prone and
costly however, as neither are experts in both fields and miscomprehensions slip
in quickly. Thirdly, once the knowledge is formalized, it can be difficult to a
domain expert without a good grasp on logic to validate it, as they might not
fully understand what is written down.

One knowledge acquisition methodology that aims to tackle these problems is
Joint Interactive Modelling (Fig. 1.2). This methodology is straightforward to
understand by dissecting its name:

Joint While knowledge acquisition is always a collaborative process, Joint
Interactive Modelling takes it a step further by actively including the domain
expert in the formalisation. Here, a requirement is that they should be able to
actively partake in the modelling of the knowledge. In other words, they should
be able to see what is written down, understand the notation its written in,
and be able to formalize their knowledge together with the knowledge expert.
In this way, the expert can immediately perform an initial validation: “Does
what I explained correspond to what the knowledge engineer and I just wrote
down?”.

Interactive In Joint Interactive Modelling, building the knowledge base should
be interactive, in the sense that prototypes should be made quickly and
frequently. This ensures that a more thorough, incremental validation is possible,
by letting the domain expert “play around” with the formalized knowledge. If
any errors are discovered, they can be dealt with quickly.

So, in general, the idea of Joint Interactive Modelling is to include the domain
expert in every step of the process, and to support tight feedback loops.



THE IDP SYSTEM 5

Figure 1.2: Diagram of the Joint Interactive Modelling process

1.3 The IDP System

The IDP system [42, 35] is an implementation of the KBP. Here, the knowledge
in the KB is represented in a rich extension of First Order Logic (FOL), called
FO(·) (pronounced “eff-oh-dot”), which extends FOL with types, aggregates,
inductive definitions and more. The name “IDP system” is an umbrella-term for
a number of KBP reasoning engines for FO(·), the latest of which is IDP-Z31.
As IDP-Z3 is used throughout this thesis, we will now give a brief introduction
on the FO(·) formalism, on IDP-Z3’s inference tasks and on an interactive,
IDP-Z3-based interface.

1www.IDP-Z3.be

www.IDP-Z3.be
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1.3.1 FO(·)

FO(·) is an expressive and flexible knowledge representation language, capable
of modelling complex domains. Knowledge in an FO(·) KB is structured in
three kinds of blocks: vocabularies, structures and theories. We will briefly go
over each block, and illustrate their usage with an FO(·) implementation of the
map colouring problem.

A vocabulary specifies a set of symbols. A symbol is either a type, function, or
a predicate. A type represents a range of values, e.g., an enumeration list of
countries called Country or the domain of real numbers R. A function symbol
represents a function from the Cartesian product T1 × . . .× Tn of a number of
types to a type Tn+1. In the listing below, the function colour_of : Country →
Colour maps each country on a colour. A predicate symbol expresses a function
on range B, i.e., each set of arguments is either true or false. For example, the
predicate borders : Country × Country → B can be used to express when two
countries share a border.
vocabulary {
    type Country := {BE, NL, FR, LU, DE}
    type Colour := {Red, Green, Blue, Yellow}
    colour_of: Country → Colour
    borders: Country × Country → B
}

A (partial) structure specifies an interpretation for (some of) the symbols of a
given vocabulary. A structure is total if it specifies an interpretation for each
symbol of the vocabulary. The structure below contains an interpretation for
borders, which intuitively denotes whenever two countries border.
structure {
    borders := {(BE, NL), (BE, FR), (BE, LU), (BE, DE),
                (LU, FR), (LU, DE), (LU, BE),
                (DE, FR), (DE, NL)}.
}

A theory contains a set of logical formulae in FO(·). For example, the formula
in the theory below expresses that “For every country c1 and c2 must hold that
if they border, they do not have the same color”.
theory {
    ∀c1, c2 in Country: borders(c1, c2) ⇒ color_of(c1) ̸= color_of(c2).
}

As an extension of FOL, FO(·) uses the standard logical connectives and
quantifiers shown in Table 1.1. On top of them, it adds types, definitions,
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aggregates, and more. We will briefly go over the former three; for detailed
explanations of all extensions, we refer to the FO(·) standard [33].

Types have already been introduced in the previous paragraphs as domains of
elements. IDP-Z3 supports four2 built-in types: B (Bool), Z (Int), R (Real) and
Date. We can also introduce custom types, e.g., containing strings or specific
number enumerations, such as Country and Colour. Quantifiers in formulas
must always be typed to prevent domain mismatches.

FO(·) also introduces definitions, which define a symbol by enumerating a set
of necessary and sufficient conditions in the form of rules. A definition may
also be inductive, i.e., may define a symbol in terms of the symbol itself. For
example, the definition below expresses when a country c2 can be reached from
a country c1. The first rule expresses that a country c2 is reachable if there is a
border, and the second rule expresses that a country c2 is reachable if there is
a reachable country c3 which in turn can reach c2.
{
    ∀c1, c2 in Country: reachable(c1, c2) ← borders(c1, c2).
    ∀c1, c2 in Country: reachable(c1, c2) ← ∃c3: reachable(c1, c3)
                                                ∧ reachable(c3, c2).
}

A third extension to FOL is support for aggregates; more specifically, the
sum, min, max aggregates and the cardinality expression. These are operators
which evaluate (multi)sets and respectively return their sum, minimum value,
maximum value or their cardinality. For example, the formula below counts
how many neighbours each country has, using a cardinality.
∀c in Country: nb_neighbours(c) = #{c2 in Country: borders(c, c2)}.

IDP-Z3 also implements some convenient notations in the form of syntactic
sugar for expressions that frequently occur. Examples of such expressions are
the in-operator and direct quantification, which are both demonstrated below.
// Below formulas are semantically equivalent.
colour_of(BE) in {Red, Green, Yellow}.
colour_of(BE) = Red ∨ colour_of(BE) = Green ∨ colour_of(BE) = Yellow.

// Below formulas are semantically equivalent.
∀(c1, c2) in borders: colour_of(c1) ̸= colour_of(c2).
∀c1, c2 in Country: borders(c1, c2) ⇒ colour_of(c1) ̸= colour_of(c2).

2Excluding the ones introduced for predicate and function symbols as Concept – see
https://fo-dot.readthedocs.io/en/latest/Concept.html.

https://fo-dot.readthedocs.io/en/latest/Concept.html
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Table 1.1: Logical operators in FO(·)

Operator Meaning
ϕ ∧ ψ ϕ and ψ must hold
ϕ ∨ ψ ϕ or ψ must hold (inclusive)
¬ϕ ϕ is false
ϕ⇒ ψ ϕ implies ψ
ϕ⇔ ψ ϕ and ψ are equivalent
∀x in T : ϕ(x) ϕ(x) must hold for every x in type T
∃x in T : ϕ(x) ϕ(x) must hold for at least one x in type T

The IDP-Z3 documentation [34] maintains an exhaustive list of all these “extra”
expressions that are allowed when building a KB.

1.3.2 Inference tasks

By itself, a KB cannot be executed: it is merely a “bag of knowledge”, without
information on how it should be used. IDP-Z3 supports many different inference
tasks that can be applied to this knowledge. We will briefly go over the inference
tasks that are relevant to this work.

Model expansion Given a partial structure I, model expansion extends it to a
complete I that satisfies the theory T (I |= T ). Note that this partial structure
can also be empty. In plain English, model expansion generates complete models
based on the information that is already known.

Propagation Given a partial interpretation I for the vocabulary of a theory
T , propagation derives the consequences of I according to T , resulting in a
more precise partial interpretation I ′. In other words, propagation will derive
truth values which hold in all possible models, i.e., are “shared” between them.

Optimization Optimization is similar to model expansion, but looks for the
model with the lowest/highest value for a given term. If multiple models
exist, IDP-Z3 will instead return a partial structure containing only those
interpretations that are shared between these models. This is different from
previous versions of IDP.
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Explanation Given a (partial) structure I which does not satisfy the theory T
(I ̸|= T ), explanation will find minimal subsets of the interpretations in I and
the formulas in T which together explain why the structure does not satisfy the
theory. Note that this explanation is not necessarily minimal in the sense that
it is the smallest possible explanation, but instead minimal in the sense that it
contains no irrelevant information. IDP-Z3 cannot guarantee that it generates
the smallest possible explanation for an unsatisfiability.

Abstract Model Generation Given a theory T and a partial interpretation I,
abstract model generation searches for a set C of simple formulas that imply the
theory, i.e., such that for all I that extend I, I |= C → T . Each interpretation
that satisfies all of the formulas C is a model of T ; in this sense, the formulas
form an abstract representation of a class of models of T .

Relevance Given a theory T and a partial interpretation I, the relevance
inference will determine which symbols are still relevant. In other words, it will
look for the variables which are an essential part of at least one model.

In the past, the IDP system has already proven itself as a suitable tool in a
number of use cases [3, 4, 6, 45, 47, 48]. Its approach works well to tackle
complex problems in an interactive way, typically by supporting experts in
leveraging their own knowledge. These problems can be found in many domains,
such as manufacturing, finance, logistics, law, and more. IDP-Z3 typically
performs best if there are many constraints over relatively small domains.

An example of IDP-Z3 running in production is the OSCAR tool developed
by Intelli-Select3, which has been integrated in the toolkit of one of the global
leading financial institutions [86].

1.3.3 Interactive Consultant

The Interactive Consultant [32] is a graphical user interface for IDP-Z3, aimed at
facilitating interaction between a user and the system. It is a generic interface, in
the sense that it is capable of generating a view for any syntactically correct KB.
In short, each symbol of the KB is represented using a symbol tile, which allows
users to set or inspect that symbol’s value. In this way, the GUI represents a
partial structure to which we can add and remove values. Each time a value is
added, removed or modified, IDP’s propagation is performed and the interface is
updated: symbols for which the value was propagated are updated accordingly,

3https://intelli-select.com/

https://intelli-select.com/
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and values that are no longer feasible for the other symbols are removed. In
this way, a user is guided towards a correct solution: they cannot enter a value
that would make the partial structure represented by the current state of the
GUI inconsistent with the theory.

An example of the interface in action is shown in Fig. 1.3. Here, a knowledge
base dealing with event organisation according to the Belgian 2021 Covid-19
guidelines has been loaded in the Interactive Consultant. The user has already
made two choices, namely that there are 10 participants, and that they do not
have a Covid Safe Ticket. Based on this information and the rules in the KB,
IDP-Z3 derives that Indoor sport is no longer feasible (as indicated by the grey
cross). Moreover, it has also derived that “end time() ≤ 11” is now irrelevant,
as it will have no influence on potential models.

At any point in time the user can ask for an explanation of a system-derived
value, e.g., when the user does not understand it or agree with it. The system
will then respond with the relevant formulas and user-made assignments that
lead to the derived value, as shown for Indoor sport in the example. In this
sense, the tool is explainable, leading to more trust in the system.

A similar functionality is in place for the rare cases in which a user manages
to reach an inconsistent state, i.e., a set of assignments that can no longer
be extended to a solution. While the IC removes values that have become
impossible, it cannot do so for variables belonging to unbounded integer or
real domains. For example, if the theory contains a rule stating that the cost
of a product must always be below a maximum cost value, it would still be
possible to input something which contradicts this. A user could for instance
input “Max Cost = 20” followed by “Cost = 30”, leading to an obvious conflict.
As both of these variables can have any value between 0 to +∞, the Interactive
Consultant uses a free-form input field for these variables instead of a limited
drop-down list. If such an inconsistency arises, the interface alerts the user and
explains why no solutions are possible by showing the relevant design choices
and laws.

One of the design goals of the Interactive Consultant is to empower users to
interactively explore a problem space. Indeed, due to its intuitive interface and
powerful solver, users can seamlessly interact with the knowledge in the KB.
The Interactive Consultant interface has already proven itself to be useful in a
number of applications in the past [4, 48].
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Figure 1.3: Screenshot of IC with Covid guidelines example.

1.4 Research Goal

The research goal of this thesis is to simplify the process of creating knowledge
bases for domain experts. While IDP-Z3 is a powerful, multi-faceted reasoning
engine, creating an FO(·) knowledge base remains a hurdle in the conception
of IDP-based tools. Though the knowledge acquisition methodology of joint
interactive modelling already ameliorates the process, FO(·) is not an ideal
formalism. While it is possible that domain experts with a formal mathematics
background (e.g., engineers) have a strong knowledge of FOL, most domain
experts might find the language quite daunting and will not be able to express
their knowledge in it, let alone interpret FO(·) written by someone else.
Therefore, the main goal of this thesis is to facilitate the Joint Interactive
Modelling process by investigating and/or designing alternative knowledge
formalisms. For such a notation to be suitable as a KB language, there are a
few requirements imposed on it.
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User-friendly The user-friendliness of a notation is an important factor, as
non-AI experts should be able to understand it sufficiently well in order to
be able to express their knowledge. Ideally, we want a notation for which the
basics can be explained quickly, and for which the more intricate details can
be learned during the first modelling session(s). Here, intuitiveness is key: if
a domain expert can “naturally” interpret what is written down, they will be
able to quickly build instincts on how to use and interpret the formalism.

As mentioned, FO(·) might not meet these requirements for laypeople. At
the same time, we do not need to re-invent the wheel by making up our own
formalisms: there are many industry standards for representing knowledge in
one way or another which could also lend themselves well to KRR. For this
reason, some chapters in this thesis will focus on evaluating or extending existing
standards on their KRR capabilities.

Expressive Besides user-friendly, a good notation should also be sufficiently
expressive to correctly model a problem. Note that “correctly” here consists of
two aspects: (1) the knowledge in the KB should accurately model the problem,
and (2) it should do so in a way intended by the notation, without “abusing” it.
The latter aspect is important, as having to resort to notation abuse will make
the resulting KB less intuitive to interpret.

Expressiveness and user-friendliness typically counter-act each other, as there
exists a trade-off between the two. Indeed, a user-friendly notation might have
limited expressiveness to ensure it remains “simple to use”, while an expressive
notation could support many complex constructs which lead to a steeper learning
curve.

Precise A good notation is as precise and non-ambiguous as possible. As an
example, consider natural language (NL). NL is user-friendly (we are all taught
it from birth), and sufficiently expressive to model many problems. Yet, at the
same time, it is very difficult to convert NL texts into FOL. Take for instance
the sentence “One morning I shot an elephant in my pyjamas.”4. While the
meaning might seem straightforward, the sentence can actually be interpreted
in multiple ways – was I wearing the pyjamas, or the elephant? As our end
goal is to use formalisms in conjunction with IDP-Z3, they should have a clear
and unambiguous semantics, that is formally defined and straightforward to
translate into FOL. Note that this does not mean that the work of this thesis is
IDP-specific; on the contrary, being straightforward to translate into FOL also
allows a notation to be translated to other common languages for reasoning

4 “One morning I shot an elephant in my pyjamas. How he got into my pyjamas I’ll never
know.” – Groucho Marx
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engines, such as SMT-LIB [9], ASP-Core [25] and MiniZinc [100]. In this sense,
the output of this work is also useful for a myriad of logic-related tools and
software.

1.5 Contributions

While user-friendly KRR formalisms are the main focus of the thesis, we have
also worked on other aspects of the Joint Interactive Modelling process. The
contributions of the thesis can be divided into five categories.

1. We have examined the KRR-potential of two existing industry modelling
standards, namely “Decision Model and Notation” (Chapter 2) and
“Feature Modelling” (Chapter 5), and built tooling to support their
application.

2. We have designed two extensions of the Decision Model and Notation to
further enhance its expressiveness. Firstly, “constraint Decision Model
and Notation” (Chapter 3) builds upon the notation by extending it
with constraint reasoning and related concepts. Secondly, “probabilistic
Decision Model and Notation” (Chapter 4) adds probabilistic reasoning
to the notation. Here too, we built proper tooling to support their use for
solving concrete problems.

3. We have extended the verification capabilities of the Decision Model and
Notation standard with background knowledge (Chapter 6) and integrated
them in our tool. These verification capabilities are an excellent addition
to support Joint Interactive Modelling, as they form yet another layer of
verification and validation of the knowledge.

4. We have performed two qualitative studies. Firstly, we gauged domain
expert’s opinions on our IDP-based approach in the context of a use
case on adhesive selection (Chapter 7). The output of this study is a
valuable source of information to guide further development of our tools
and approaches. Secondly, we performed a study on knowledge modelling
formalisms by interviewing multiple knowledge experts (Chapter 8). Here,
the aim is to get a grasp on the instincts of the modellers w.r.t. which
aspects are important when selecting a KRR formalism. The output of the
chapter is therefore a condensed opinion of multiple knowledge experts,
which can serve as a guide to pick the correct formalism for a problem.

5. We have developed an “extreme” example of a user-friendly notation in the
form of a didactic tool for children, named FOLL-E (Chapter 9). FOLL-E
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combines a physical, block-based notation for FOL with an embedded
IDP-Z3 application into an educational game for children.

An overview of all software developed or contributed to throughout the course
of this thesis is available in Appendix A.

1.6 Outline

In the next chapter, we will begin by introducing the Decision Model and
Notation standard (DMN), and elaborate on its semantics. We also introduce
two tools to leverage DMN using IDP-Z3: an integration between a DMN editor
and the Interactive Consultant, and a flexible Python API for our IDP-Z3-based
DMN engine.

In Chapter 3, we present our first extension, the constraint Decision Model and
Notation. Here, the goal is to extend DMN’s expressiveness while maintaining
its user-friendly, tabular format. We describe the syntax and semantics of
the notation, and compare it to other approaches based on DMCommunity
challenges.

Chapter 4 describes our probabilistic DMN extension. The motivation for this
extension is similar to the previous one: we wish to extend the expressiveness
(with probabilistic reasoning), while maintaining the user-friendliness of the
original formalism. We show the syntax of our extension, and describe how it
can be translated to a state-of-the-art probabilistic reasoning engine.

We introduce Feature Modelling in Chapter 5. This is an industry standard in the
field of software product lines that lends itself well to modelling configuration
problems. Based on a use case, we show the benefits of extending it with
background knowledge and present an integration of feature modelling in the
Interactive Consultant for that purpose.

In Chapter 6, we extend the existing verification capabilities of DMN to also
include background knowledge. We show that this approach leads to a more
thorough verification compared to existing approaches, and present an IDP-Z3-
based verification suite.

Chapter 7 introduces the use case that has been worked out through this thesis.
This use case proved an excellent opportunity to perform a qualitative study
on our knowledge-based approach, and as such, the chapter summarizes the
thoughts and comments of the domain experts.
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A second qualitative study, in which we interview modelling experts, is presented
in Chapter 8. The main goal of these interviews is elucidating the modelling
approaches of the experts based on four real-life use cases. As such, the output
of this chapter is a valuable source of information to guide future research w.r.t.
modelling formalisms.

In Chapter 9, we present FOLL-E, a learning environment for first order logic
targeted at children. Here the contribution is two-fold. Firstly, we have designed
a tangible, block-based notation for FOL that allows children to express formulas
without worrying about mathematical symbols or syntax errors. Secondly, we
have incorporated this notation in an interactive, captivating tool to teach FOL.

Finally, we finish the thesis by concluding in Chapter 11 and we discuss possible
valorisation of the research output in Chapter 10.





Chapter 2

Decision Model and Notation
The Decision Model and Notation standard (DMN) is an industry
standard for decision logic. Due to its intuitive table-based
format, DMN is considered very user-friendly. However, its use in
industry is limited to expressing straightforward decision modelling
problems, where given a set of inputs, we want to derive an output.
In this chapter, we investigate the applicability of DMN as a
full-fledged KRR formalism, and build tooling to support it.

This chapter is based on work presented at the Benelux Conference on Artificial
Intelligence (BNAIC), November 2020 [130]; the Joint Conference on Rules and
Reasoning (RuleML+RR), September 2021 [128]; and DecisionCAMP 2021,
September 2021 [131]. Parts of this research were performed in collaboration
with Vedavyas Etikala and Jan Vanthienen of the LIRIS research group.

17
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2.1 Introduction

The Decision Model and Notation standard [102], designed by the Object
Modelling Group (OMG), is a user-friendly, table-based notation for modelling
decision logic. Its main goals are to make decision knowledge readable by
everyone involved in the decision process (business people, IT experts), and to
be executable. Since its start in 2015, DMN has quickly gained popularity in
both industry [31, 69, 116] and academia [5, 40, 48].

Typically, DMN is used to automate day-to-day business decisions. Most DMN
tools therefore focus on supporting the required functionalities for this specific
use.

However, we believe that more ambitious uses of DMN are also possible. In
particular, the knowledge that is contained in a DMN model could be used
to build knowledge-based AI systems, that can implement various sorts of
intelligent behaviour. Consider, for instance, a cobot tasked with assisting an
operator in product assembly. It seems likely that the domain knowledge that
such a cobot would need can be expressed in DMN, and, moreover, doing so
would allow the domain knowledge to be written and maintained directly by the
operators themselves, instead of requiring programmers or knowledge engineers
as middle men.

To actually implement such a system, the functionality of typical DMN tools
does not suffice. For instance, the cobot would need to figure out which sensor
input is necessary for specific operations, and such functionality is not supported
by the state-of-the-art DMN execution engines.

Here, a reasoning engine such as IDP-Z3 could form the missing link, as
applying its powerful logical inference algorithms could effectively “unlock”
more functionalities for a DMN model. Indeed, Dasseville et al. [40] already
demonstrated this approach by manually translating DMN into FO(·). However,
to build truly useful intelligent systems, this alone does not suffice: it is also
necessary to combine these different inference tasks in a suitable way. Moreover,
this should be done using the concepts and terminology from the original DMN
model (instead of those from the FO(·) theory that the DMN model is translated
to behind the scenes).

To further support the combination of DMN and IDP, we present two approaches.

• An integration between a DMN editor and the Interactive Consultant.

• A versatile Python API that combines DMN as a notation with the IDP
system as a reasoning engine.



PRELIMINARY: DECISION MODEL AND NOTATION 19

Both approaches share the same idea: tightly integrating the accessible DMN
formalism with the powerful reasoning capabilities of the IDP system, thereby
combining their advantages.

The second approach is similar in spirit to previous work on the PyIDP API [136],
which exposes the functionality of IDP to Python programmers, allowing also
the knowledge base itself to be represented in a pythonic syntax, rather than
the usual syntax of FO(·). The difference to our work is that we now bring
DMN into the mix to allow the knowledge to be maintained by domain experts,
rather than Python programmers.

This chapter is structured as follows. First, we introduce DMN in Section 2.2,
and elaborate on its semantics and the state-of-the-art execution methods. We
then present a first approach for combining DMN and IDP-Z3 in Section 2.3, and
follow it up by a second approach in Section 2.4. In Section 2.5, we demonstrate
how this second approach can be used to build a naive chat bot based on DMN.
We finish with a comparison to other DMN tools in Section 2.6 and a conclusion
in Section 2.7.

2.2 Preliminary: Decision Model and Notation

DMN consists of two main components: a Decision Requirements Diagram
(DRD), and decision tables. The DRD is a graph representing the decision flow
throughout the DMN model. It shows a graphical overview of which decision
tables are present, how they connect, which input variables are used, which
data sources are needed, and more. Fig. 2.1 shows an example of a DRD with
three decision tables, as represented by the rectangles, and four input variables,
as represented by the ovals. The arrows between them represent the flow of
information: the value of BMI is defined by the value of the inputs Weight and
Length, the value of BMI Level is decided based on BMI and Sex, and the value
of Risk Level is decided based on BMI Level, Sex, and Waist.

The second component of DMN consists of decision tables, which are tabular
representations of straightforward decisions. Due to their format, these tables
are seen as intuitive and user-friendly, with a low conceptual complexity [68].
Fig. 2.2 shows the decision tables for our BMI running example, taken from [53].
In DMN, decision tables contain one or more input variables (in green, below
the table header) and one output variable (in blue), each corresponding to a
column. A decision table defines the value of the output variable in terms of
the value of the input variables. Each row of the table corresponds to a decision
rule. We say that a rule fires whenever the actual value of the input variables
match the values listed in the rule’s cells. For example, if BMI = 27 and Sex
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Risk Level Waist

BMI Level

BMI

Sex

Length

Weight

Figure 2.1: DRD for the BMI example

= Female, the fifth rule of the second table will fire, leading to a BMILevel of
Overweight.

The way in which the inputs define the output depends on the hit policy of
the table, as denoted in its top-left cell. There are two types of hit policies:
single-hit policies, which denote that the output is determined by a single row,
and multi-hit policies, which denote that the output is determined by a set of
rows. More specifically, the single-hit policies are as follows:

U (-nique): the rules must be mutually exclusive, and may not overlap.

A (-ny): multiple rules may fire, as long as they specify the same output
value.

F (-irst): the first applicable rule of the table is chosen to fire.

P (-riority): rules are assigned a priority, and the applicable rule with the
highest priority fires.

The multi-hit policies are as follows:

C (-ollect): collect all output values of the fired rows in a list

C+ : sum all output values of the fired rules together.
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BMI
U Weight Length BMI
1 — — Weight/(Length*Length)

BMI Level
U BMI Sex BMILevel
1 < 18.5 Female Underweight
2 < 25 Male Underweight
3 [18.5..25] Female Normal
4 (25..30] Male Normal
5 (25..30] Female Overweight
6 > 30 — Obese

Risk Level
U BMILevel Sex Waist Risk Level
1 Normal — — Low
2 Underweight — — High
3 Overweight Male ≤ 102 Increased
4 Overweight Male > 102 High
5 Overweight Female ≤ 88 Increased
6 Overweight Female > 88 High
7 Obese Male ≤ 102 High
8 Obese Male > 102 Very High
9 Obese Female ≤ 88 High

10 Obese Female > 88 Very High

Figure 2.2: Decision tables for the BMI example

C> : select the largest output value of the applicable rules.

C< : select the smallest output value of the applicable rules.

The example DMN model shown in Fig. 2.2 consists of three tables in total,
defining BMI, BMI Level and Risk Level. In this example, all tables have the U
hit policy, meaning that only a single row can fire per table. A cell containing
“—” signifies that the value of this variable does not matter. For instance, if
the BMI Level is underweight, the Risk Level is always high, regardless of sex
and waist size. Note also that the table is incomplete, as there is no rule for
BMI = 25 and Sex = Male. This means that the table is incorrect according to
the DMN standard, as will be explained later and in Chapter 6.
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Figure 2.3: Example of boxed expression using full FEEL.

The entries in a decision table are typically written in the (Simple) Friendly
Enough Expression Language, or (S-)FEEL, which is also part of the DMN
standard. S-FEEL allows simple values, lists of values, numerical comparisons,
ranges of values and arithmetic expressions. Decision tables with S-FEEL are
generally considered quite readable by domain experts.

In addition, DMN also allows more complex FEEL statements, in combination
with other forms of tables called “boxed expressions”. Fig. 2.3 shows an example
of such a boxed expression. Note that the “F” in the top-left corner of the table
does not denote the first hit policy, but rather that the boxed expression contains
FEEL. Use of full FEEL and boxed expressions other than decision tables
greatly increases complexity of the representation, which makes it unsuitable
for use by domain experts without the aid of knowledge engineers. Therefore,
we will limit ourselves to decision tables with S-FEEL expressions.

2.2.1 DMN Semantics

Most work on DMN and logics rely on the FOL semantics proposed by Calvanese
et al. [27], in which rows are represented by implications that together in a
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conjunction represent a table. The main shortcoming of this semantics is that
it assumes all tables to be complete (there is an applicable row for each possible
set of input values) and sound (there are no conflicting rules). To illustrate,
consider the BMI Level table in our running example (Fig. 2.2) according to
the semantics of [27]:

BMI < 18.5 ∧ Sex = Female ⇒ BMILevel = Underweight
∧ BMI < 25 ∧ Sex = Male ⇒ BMILevel = Underweight
∧ 18.5 ≤ BMI ≤ 25 ∧ Sex = Female ⇒ BMILevel = Normal
∧ 25 < BMI ≤ 30 ∧ Sex = Male ⇒ BMILevel = Normal
. . .

(2.1)

As mentioned, this table is not complete: there is no row specified for the
combination of BMI = 25 and Sex = Male. According to the DMN standard,
the table is therefore incorrect and it would thus be natural for the corresponding
semantics to be inconsistent. However, for the semantics outlined above, this
is actually not the case. Instead, the value of the BMILevel variable would be
unrestricted, and could take on anything from Underweight to Obese for these
input values. This side-effect of the semantics could lead to many problems if
used to reason on DMN tables.

Analogously to the semantics proposed by Marković et al. [90], the semantics in
this work relies on definitions instead of implications to represent rows. This
has two benefits: firstly, we overcome the issue with incorrect tables outlined
earlier, and secondly, definitions have better support for the relevance inference
as there is a clear distinction between “input variable” and “output variable”.
We will now go over this semantics.

Each cell (i, j) of a decision table corresponds to a formula Fij(x) in one free
variable x. For example, a cell containing “< 18.5” translates to the formula “x
< 18.5”. Table 2.1 shows an overview of all legal S-FEEL cell expressions, and
their corresponding formula. The semantics of a table row depends on the hit
policy of the table. In a table T with hit policy U or A, n input columns I and
an output column o, each row i is represented by the following definitional rule:

Fio(xo)←
∧
j∈I

Fij(xj). (2.2)

The rows of a table T with hit policy F are represented similarly, but are also
appended by a negation of the disjunction of the previous rows. This ensures
that a row cannot fire if a row higher in the table is already applicable.

Fio(xo)←
∧
j∈I

Fij(xj) ∧ ¬
( ∨

k∈1..i−1

( ∧
j∈I

Fkj(xj)
))
. (2.3)
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x F (x) x F (x) x F (x)
— true < X x < X [X,Y ] X ≤ x ≤ Y
X x = X > X x > X (X,Y ] X < x ≤ Y
X1, . . . , Xn ∨i∈n(x = Xi) ≤ X x ≤ X [X,Y ) X ≤ x < Y
not(X1, . . . , Xn) ¬ ∨i∈n (x = Xi) ≥ X x ≥ X (X,Y ) X < x < Y

Table 2.1: S-FEEL cell formula semantics

A DMN decision table is then represented by a finite sequence of such definitional
rules, one for each row of the table. Note that such a definition captures both
the necessary and the sufficient conditions for the concept it defines. By the
former we mean that if the head is satisfied, at least one of the bodies must be
satisfied as well, while the latter signifies that if one of the bodies is satisfied,
the head will be satisfied as well.

For example, the first two tables of our running examples are translated to the
following definitions in FO(·):

{
BMI () = Weight()/(Lenght()× Lenght())
}
{
BMILevel() = Underweight ← BMI () < 18.5 ∧ Sex() = Female.
BMILevel() = Underweight ← BMI () < 25 ∧ Sex() = Male.
BMILevel() = Normal ← 18.5 ≤ BMI () ≤ 25 ∧ Sex() = Female.
BMILevel() = Normal ← 25 < BMI () ≤ 30 ∧ Sex() = Male.
BMILevel() = Overweight ← 25 < BMI () ≤ 30 ∧ Sex() = Female.
BMILevel() = Obese ← 30 < BMI ().
}

(2.4)

2.2.2 Execution Methods

Since the introduction of DMN by OMG, software companies such as
Camunda [30], OpenRules [103] and Signavio [114] offer decision modelling
software based on this standard. Besides assisting the user in modelling and
verifying decisions, some of them also provide execution mechanisms for the
models.
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Execution of decision tables goes back to Decision Table Solvers [135].
Practically, all of these tools all support the same execution method: the
bottom-to-top approach. This execution method, which is seen as the “standard”
method, requires the user to input a value for every input variable present
in the model, after which the execution engine decides the value of all other
variables. In our running example, this correspondents with supplying a value
for Weight, Length, Waist and Sex to derive the value of Risk Level. While
this is considered the standard usage of a DMN model, some tools also support
additional execution methods.

One such method is reasoning on sub-decisions: instead of evaluating every
decision table in a model, it is sometimes preferable to evaluate only a specific
subset of decisions. If we are only interested in the BMI Level, for example, we
do not need to evaluate the Risk Level table. The advantage of reasoning on
sub-decisions is that not all input variables are required, i.e., Waist is irrelevant
as long as we do not need to know the RiskLevel. Examples of tools capable of
this execution method are Camunda and OpenRules, both of which can evaluate
a decision table in isolation. By reasoning on a single table at a time, they
allow only evaluating the tables necessary for a sub-decision.

Another alternative execution method is the “wildcard” mode, such as the one
provided by Camunda and Signavio, in which users can evaluate a decision
model with partial input values. This is most interesting in cases where not all
input variables are known, but a user still wants to see what top-level values
remain possible. For example, if the value of Sex is unknown, a wildcard value
can be used instead, in which case the engine returns a set of all possible output
values.

2.3 DMN in Interactive Consultant

As a first way of leveraging the user-friendliness of DMN together with the
benefits of the IDP-Z3 system, we integrated a DMN editor (dmn-js [24]) into the
Interactive Consultant. In this way, this new tool (called DMN-IDP) functions
as a full-fledged DMN tool, capable of supporting users in reasoning on the
information in the model.

Fig. 2.4a shows a screenshot of the BMI running example (Fig. 2.2) modelled
in DMN-IDP. Models can be imported and exported from DMN-IDP in the
DMN Exchange format, which is part of the DMN specification [102, p217].
The translation of DMN to FO(·) is performed by the cDMN solver [125] (see
also Chapter 3), based on the semantics outlined in Section 2.2.1. This FO(·) is
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then passed on to the Interactive Consultant, which automatically generates an
interface using the variables from the DMN model, as shown in Fig. 2.4b.

Like any other DMN engine, DMN-IDP can derive the value of the top-level
decision based on the values of the input variables. But, unlike the others,
DMN-IDP also supports reasoning on the knowledge for other purposes, thanks
to IDP-Z3 and the KBP. Indeed, an FO(·) representation of a DMN model is
merely a “bag of knowledge”, without a predefined use in mind: we do not need
to limit ourselves to bottom-to-top decisions.

As an example, consider a man that is 1.79m tall, weighs 100kg and has a waist
size of 98. Based on the length and the weight, the system first derives that
the man has a BMI of 31.2 and is therefore obese. This behaviour is already
different from standard DMN engines, as these latter tools typically require all
inputs to be known before making any decisions. DMN-IDP on the other hand
is “always live”, and will interactively derive consequences where possible.

Once the man also enters his waist size, the tool derives that he has a high
risk level. Naturally, the man wants a low risk level to be healthy, so he would
now like the same tool to assist him in finding a target weight. Even though
the knowledge necessary to find this information is present in the DMN model,
state-of-the-art DMN engines cannot infer this information.

In contrast, DMN-IDP effectively allows the man to “reason backwards”, by
removing his weight and instead selecting a low risk level. He can now calculate
a healthy target by maximizing the value for weight, resulting in a weight of
96.12kg at a BMI of 29.99, which according to our DMN model is considered
healthy.

As highlighted earlier, DMN-IDP is also capable of reasoning on incomplete
information. Together with IDP-Z3’s relevance inference task, this ensures that
users do not need to input more information than necessary. As an example,
Fig. 2.4c shows the interface for a person that is 1.79m tall, and weighs 79kgs.
Notice that, regardless of their waist or sex, the system has derived that their
risk level is always Low, which saves them from inputting this information. In
the context of some applications (e.g., chat bots), this can greatly reduce the
number of queries needed, as highlighted later in this chapter.

A hosted version of DMN-IDP is freely available online1. Thanks to the DMN
Exchange format, any DMN model made in a different modeller can also be
imported in DMN-IDP, thereby “unlocking” more ways in which the model can
be used. DMN-IDP is open source2 under the LGPLv3 license.

1https://dmn-idp.onrender.com/
2https://gitlab.com/EAVISE/cdmn/DMN-IDP

https://dmn-idp.onrender.com/
https://gitlab.com/EAVISE/cdmn/DMN-IDP
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(a) The BMI example implemented in the DMN-IDP editor.

(b) The automatically generated interface for the BMI example.

(c) Example of reasoning on incomplete information in DMN-IDP.

Figure 2.4: Screenshots of the DMN-IDP tool.
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2.4 IDP-Z3-based DMN reasoning API

To build actual applications on top of DMN models, DMN-IDP does not suffice as
it cannot easily be integrated into larger software. To overcome this, our second
approach to integrating DMN and IDP-Z3 is an easy-to-use Python API (named
DMN-IDPy) that supports the same fundamental reasoning functionalities as
DMN-IDP, and more. To illustrate its usefulness, we will first enumerate its
capabilities in this section. For each capability, we briefly mention what it is,
why it is important and we show a short code snippet to show it in action.
Afterwards, we will show an example application based on the API, followed
by a comparison between our API and that of other state-of-the-art decision
engines.

2.4.1 Bottom-Up Decision Calculation

Like any other DMN tool, our API supports the “bottom-to-top” functionality.
In the example shown in Fig. 2.2, this corresponds to setting the values for
Weight, Length, Sex and Waist to then calculate the decisions in the following
order: BMI → BMILevel → RiskLevel.

spec = DMN(’bmi.dmn’)
spec.set_value(’weight’, 74)
spec.set_value(’length’, 1.79)
spec.set_value(’sex’, ’Male’)
spec.set_value(’waist’, 90)

→

>>> spec.model_expand(1)
Model 1
==========
bmi := 23.09540900720951.
riskLevel := Low.
BMILevel := Underweight.
sex := Male.
waist := 90.
weight := 74.
length := 1.79.

2.4.2 Reasoning with Incomplete Information

In contrast to most state-of-the-art execution engines, DMN-IDPy can reason
with incomplete information. For example, to calculate the value of one or
more sub-decisions without requiring the values of all input variables: if we are
exclusively interested in the value of BMILevel, we should be able to perform
this decision using only Weight and Length as inputs.
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spec.set_value(’Weight’, 74)
spec.set_value(’Length’, 1.79)
spec.propagate()

→ >>> spec.value_of(’BMI’)
23.09540900720951

By supporting reasoning with incomplete information, every DMN model that
consists of more than one table can directly and efficiently be used for multiple
purposes by reasoning on sub-decision trees.

2.4.3 Relevance

One of the goals of our API is to allow generic tools to be built. As such,
we want to avoid the need for hard-coding an assignment order to variables.
DMN-IDPy instead allows querying which variables are relevant for making a
certain decision, at runtime. For example, because BMI is defined by Length
and Weight, these latter two variables should both be known in order to decide
the value of BMI. By implementing this functionality in the API, tools can be
built with a more generic nature.

Note that by “inputs” we do not only mean the inputs of a decision table, but
rather all upstream variables needed for a decision to be made. For example,
while the BMI Level table has two input variables, ons of those in turn has
two input variables of its own. So, in reality, there are three dependencies for
BMI Level, but at two different levels of the DRD. In the API, we show the
number of extra node hops necessary to reach the variable to clearly denote this
difference. This information is generated from the DMN file, without making
use of the IDP system.

>>> spec.dependencies_of(’BMI’)
{’Weight’: 0, ’Length’: 0}

>>> spec.dependencies_of(’BMILevel’)
{’BMI’: 0, ’Weight’: 1, ’Length’: 1, ’Sex’: 0}

As mentioned in Section 2.4.2, this can help optimize the required operations
needed to decide a variable’s value.
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2.4.4 Multidirectional Reasoning

With the aim of getting as much use out of a DMN model as possible, being able
to reason on decisions “in any direction” unlocks a lot of additional functionality.
The knowledge to do so is already present in the decision tables, and our
DMN-IDPy API is the first to offer it.

However, this means we need a way to directly assign values to decision variables
(instead of only to inputs). For example, if the value for BMI is already known
beforehand, we can directly assign that value to the decision variable. In this
way, we derive the value of BMI Level without entering a weight and height.

spec.set_value(’BMI’, 31)
spec.set_value(’Sex’, ’Female’)
spec.propagate()

→ >>> spec.value_of(’BMILevel’)
Obese

In the previous section, we discussed an obese man that is 1.79m tall, who
wants to know what his target weight should be. This example of “backwards”
reasoning can be implemented in DMN-IDPy as follows:

spec.set_value(’BMI’, ’25’)
spec.set_value(’Length’, 1.79)
spec.propagate()

→ >>> spec.value_of(’Weight’)
80.1025

Here, only a single value for Weight remains, because we set both BMI and
Length. However, if we only set BMI, multiple values for Weight (and Length)
are still possible, and no equality Weight = x would be propagated. Indeed,
instead of a single solution, we now have a solution space.

There are multiple ways to traverse this solution space in order to find a
single solution. Assigning values to more variables will decrease the size of
the space, possibly up until the point where there is only one solution left. If
there are no variables left and there are still multiple solutions possible, we can
generate solutions via IDP’s model expansion inference (as demonstrated in the
example in Section 2.4.1). Alternatively, we can search for the solution with
the maximal/minimal value for a specific variable, as further explained in the
Section 2.4.7.
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2.4.5 Known variables

Because of the API’s interactive approach, in which any variable can be assigned
a value at any time, it is important to be able to keep track of which variables
are known. A variable is considered known when it has been assigned a value,
either by the user or by the reasoning engine via propagation. Consider for
instance a case where a user has calculated their BMI level by entering their
length and weight, as demonstrated in Section 2.4.2. If they want to calculate
their risk level afterwards, they should only have to enter their sex and waist,
as that is the only information that is still missing for this decision.

spec.set_value(’Length’, 1.79)
spec.set_value(’Weight’, 79)
spec.propagate()

→
>>> spec.is_certain(’BMI’)
True
>>> spec.is_certain(’Sex’)
False

2.4.6 Variable type and values

Every variable in a DMN model has a data type, such as Int, Float, String
or other. Intuitively, these denote the type of data that a variable represents.
To avoid errors such as assigning a numerical value to a variable of data type
String, the API allows querying a variable’s type via type_of.

String is a special case of data type: where Int, Float, etc are considered to have
infinite ranges, String is limited to a predefined list of possible values. Indeed,
it makes sense that only those values that appear in a table can be assigned
to a variable. For instance, the value of BMI level is limited to {Underweight,
Normal, Overweight, Obese}. To prevent assigning impossible values to a string
variable, the API can give a list of all possible values by either returning the
variable’s predefined list, or, if no list was predefined, by returning a list of all
string values which appear at least once for that variable.

>>> spec.type_of(’BMI’)
Real
>>> spec.type_of(’Sex’)
String
>>> spec.possible_values_of(’BMILevel’)
[’Obese’, ’Underweight’, ’Overweight’, ’Normal’]
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2.4.7 Optimization

Optimization allows us to find the solution with the highest or the lowest value
for any given numerical variable. Consider a patient that has just entered their
weight and length to find out that they have an Overweight BMI Level. A
logical next question would be: “What should my target weight be if I want to
have a normal BMI Level?”. To answer this, they can enter their length and set
the value of BMI Level to Normal. If they then maximize the value of Weight,
the system will calculate the maximum weight that still results in a normal
BMI Level.
>>> spec.set_value(’Length’, 1.79)
>>> spec.set_value(’BMILevel’, ’Normal’)
>>> spec.maximize(’Weight’)
Length := 1.79.
Weight := 95.80259.
BMILevel := Normal.

2.5 DMN-IDPy Application Example

We will now sketch a naive implementation for a chat bot based on DMN-IDPy,
implemented in less than 25 lines of Python. Its main goal is to allow users to
calculate any of the intermediary or top-level variables of a DMN model. In
order to achieve this, the bot goes through a few steps. First, it fetches the list
of variables and asks the user which variable should be calculated.
spec = DMN(sys.argv[1], auto_propagate=True)
vars = spec.get_outputs() + spec.get_intermediary()
req_var = input(’Which␣variable␣to␣calculate?␣{}\n>’.format(variables))

Next, the program finds out which input variables should be known in order to
make this calculation. Input variables without any effect on the value of the
requested variable are not included.
deps = spec.dependencies_of(req_var)
missing_vars = [x for x in deps if x in spec.get_inputs()]
print("\nThe␣following␣variables␣are␣still␣unknown:")
print(missing_vars)

Finally, it loops over every unknown variable and queries the user for its value.
A different question is asked based on the data type of the variable, to prevent
type clashes. If the program requests the value of a String-based variable, it
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should also supply the user the list of possible values. Similarly for numerical
variables, the user should be notified if the variable is an integer or a float.

for var in missing_vars:
# Ask for the variable’s value. Based on var type, ask different question.
var_type = spec.type_of(var)
if var_type in [’Real’, ’Int’]:

msg = "Value␣for␣{}␣({})␣unknown.\n>".format(var, var_type)
else:

pos_vals = spec.possible_values_of(var)
msg = "Value␣for␣{}␣unknown.\n"\

"Possible␣values:␣[{}]\n>".format(var, pos_vals)
value = input(msg)
spec.set_value(var, value)

if spec.is_known(req_var):
break

req_var_val = spec.value_of(req_var)
print(’Calculated␣value␣for␣{}:\n{}’.format(req_var, req_var_val))

Note that at the end of every loop cycle, the program checks whether the
variable is known yet. While this might not make much sense at first, because
the program specifically fetched the list of necessary inputs for the decision,
there are cases where not all inputs might be necessary. Consider for example
the decision table for RiskLevel. Here, if the values for Weight and Length are
queried first and they lead to a BMI Level that is neither overweight nor obese,
then the values of Sex and Waist will have no impact on this decision.

>>> python bot.py bmi.dmn
Which variable to calculate? [’RiskLevel’, ’BMILevel’, ’BMI’]
> Risk Level
The following variables are still unknown:
[’Weight’, ’Length’, ’Sex’, ’Waist’]
Value for Weight (Real) unknown.
> 79
Value for Length (Real) unknown.
> 1.79
Calculated value for Risk Level:
Low

The program example shown above works for any DMN model that is supported
by the API. For example, if we want a chat bot for personal taxes, we only
need to switch out the underlying DMN model, with no code modifications
required. Research on such DMN-based chat bots has recently been emerging
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more and more in the literature [52, 53]. In this context, DMN-IDPy has already
successfully been integrated in a full-fledged chat bot by Goossens et al. [63].

2.6 Comparison to other tools

To the best of our knowledge, there is no other approach that offers such
a flexible yet powerful use of DMN models. While there exist tools that
support more than exclusively the bottom-to-top calculation, none are capable
of performing all features discussed in this work. Table 2.2 shows a comparison
of the functionalities of DMN-IDPy, the OpenRules API and the Camunda API.

As expected, all compared APIs support the bottom-to-top execution.
Additionally, they all also support reasoning on incomplete information, but
only up to a varying degree. Both OpenRules and Camunda are capable of
using incomplete information by reasoning on sub-decisions, as they allow the
evaluation of a single decision table isolated from the rest of the DMN model.
Thus, it is possible to e.g. use the Risk Level model to only calculate a patient’s
BMI, as discussed in the example in Section 2.4.2. However, as the API’s only
allow reasoning on either the entire model or a single specific table, attempting
to reason on a sub-decision consisting of multiple tables (e.g. BMI followed by
BMILevel) requires quite a bit of extra overhead: for each table, we would need
to (a) manually supply the inputs, (b) evaluate, and (c) extract the outputs to
use as inputs for the next table. In our API, no such workarounds are needed, as
it suffices to enter all input values followed by calling the propagation inference.
As such, the process of using sub-decisions with DMN-IDPy is much more
streamlined.

The wildcard mode, as featured in Camunda, is possible in DMN-IDPy by
leveraging its ability to reason on incomplete information. After entering a
partial set of input values, we can generate all remaining solutions using the
model expansion inference.

Neither OpenRules nor Camunda support multidirectional reasoning or
optimization.

The main downside of our approach is the efficiency of the reasoning engine
itself. Where other engines have specific optimized algorithms to perform the
bottom-to-top calculation, we use a general purpose reasoning engine. As such,
our calculation times will often be a magnitude higher compared to the other
state-of-the-art engines. However, we feel that we make up for it with the
increased flexibility that the API offers.
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DMN-IDPy OpenRules Camunda
Bottom-to-top X X X
Incomplete Information X o o
Wildcard mode X X
Multidirectional Reasoning X
Optimization X

Table 2.2: Comparison between functionalities of DMN-IDPy, and state-of-the-
art DMN execution engines. (X = full support, o = partial support)

2.7 Conclusion

This chapter introduced the link between DMN as a user-friendly formalism
for modelling knowledge, and IDP-Z3, as a powerful inference engine to put
the knowledge to use. We have shown that DMN models can be used in many
more scenarios other than bottom-to-top calculation, allowing applications with
complex behaviour to be built on top of DMN. For this to be possible however,
DMN needs to be supported by a flexible reasoning tool. To this end, we have
presented two tools: an integration of DMN into the Interactive Consultant,
and a multi-functional Python API for reasoning on DMN.

DMN-IDP allows users to plug-and-play their DMN models in the Interactive
Consultant, thereby unlocking new functionalities “for free”. The tool is capable
of assisting users to traverse the knowledge in their DMN model, in more ways
than other state-of-the-art tools.

DMN-IDPy enables the IDP reasoning system as an embeddable execution
engine for DMN. In this way, it provides the required building blocks to construct
intelligent tools. The main additions of the API are:

• Support for reasoning in any direction (e.g. going in the other direction
of the DRD);

• Support for reasoning on incomplete data (allowing for sub-decision
calculations);

• Optimization of variable values.

In order to showcase DMN-IDPy in action, we created a naive implementation
of a chat bot in under 25 lines of Python code. The implementation is generic in
the sense that it can be used with any DMN model, without having to change
a line of code.





Chapter 3

Constraint Decision Model
and Notation

In this chapter, we introduce our own extension of DMN, called
cDMN (constraint Decision Model and Notation). Its aim is
to extend DMN’s expressiveness, while maintaining its intuitive
tabular format. In this way, modelling complex problems could be
more accessible to non-AI experts. We elaborate on cDMN’s syntax
and semantics, and compare it to standard DMN implementations
of decision management challenges.

This chapter is based on work presented at the Joint Conference on Rules and
Reasoning (RuleML+RR) (RuleML+RR), September 2020 [5]; DecisionCAMP,
September 2020 [124]; and on work published in Theory and Practice of Logic
Programming, 2021 [125]. The research was performed in collaboration with
Bram Aerts.

37
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3.1 Introduction

While DMN is very effective in modelling deterministic decision processes,
it lacks the ability to represent more complex kinds of knowledge. In order
to explore the boundaries of DMN, the Decision Management Community
website1 issues a monthly decision modelling challenge. Community members
can then submit a solution, using their preferred decision modelling tools or
programming languages. This allows solutions for complex problems to be found
and compared across multiple DMN-like representations. So far, none of the
available solvers have been able to solve all challenges. Moreover, the available
solutions sometimes fail to meet the readability goals of DMN, because the
representation is either too complex, too large or requires a specific computer
science background.

In this chapter, we propose an extension to the DMN standard, called cDMN.
It aims to allow more complex knowledge to be represented, while remaining
readable by business users. The main features of cDMN are constraint modelling,
quantification, and the use of concepts such as types and functions. We test
the expressiveness and capabilities of cDMN on decision modelling challenges
set forth by the Decision Management Community.

In [46], the authors presented a preliminary framework for constraint modelling
in DMN. In this chapter, we extend this by adding quantification, types,
functions, relations, data tables, optimization and by evaluating the resulting
cDMN formalism on the DMN challenges.

3.2 Challenges Overview

Of all the challenges on the DMCommunity website, we selected those that did
not have a straightforward DMN-like solution. In total, the website has set forth
64 challenges2, of which 24 meet our criterion. A list of these challenges is shown
in Table 3.1. We categorize these challenges according to four different properties.
Table 3.2 shows the list of properties, and the percentage of challenges that
have this property.

The most frequent property is the need for aggregates (54.17%), such as counting
the number of violated constraints in Map Coloring with Violations or summing
the number of calories of ingredients in Make a Good Burger. The second most
frequent property is having constraints in the problem description (37.50%). For

1https://dmcommunity.org/
2last checked 2023/07/12
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Table 3.1: List of DMCommunity challenges and their properties. 1: Universal
Quantification, 2: Constraints, 3: Optimization, 4: Need for Aggregates.

Challenge Property Challenge Property
Who Killed A.? 1 Change Making 3, 4
A Good Burger 2, 3, 4 Define Dupl. None

Coll. of Cars None Monkey Business None
Vacation Days 1, 2, 4 Family Riddle 2, 4
Cust. Greeting None Online Dating None
Loan Approval 4 Class. Employees 4

Soldier Payment 4 Reinder Order None
Zoo, Buses, Kids 3, 4 Balanced Assign. 3
Vac. Days Adv. 1, 2, 4 Map Coloring 1, 2
Map Color Viol. 1, 2, 3, 4 Crack The Code 4
Numerical Haiku 1, 2, 4 Nim Rules 2
Doctor Planning 1, 2, 4 Calculator 1, 3

Table 3.2: Percentage of occurrence of properties in challenges.

Property (%)
1. Aggregates needed 54.17
2. Constraints 37.50
3. Universal quantification 33.33
4. Optimization 25.00

instance, the constraint in Map Coloring states that two bordering countries can
not share the same color. The next property, universal quantification (33.33%),
is that a statement applies to every element of a type, for example in Who Killed
Agatha?: nobody hates everyone. The final property, optimization, occurs in
25.00% of the challenges. For example, in Zoo, Buses and Kids the cheapest set
of buses must be found.

The description of each challenge can be found on the DMCommunity website3,
together with their submissions. We also maintain a mirror repository4

containing the specific challenges and submissions used in this work.
3https://dmcommunity.org/challenge/
4https://gitlab.com/EAVISE/cdmn/DMChallenges

https://dmcommunity.org/challenge/
https://gitlab.com/EAVISE/cdmn/DMChallenges
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3.3 Related Work

It has been recognized that even though DMN has many advantages, it is
somewhat limited in expressiveness [28, 46]. This holds especially for decision
tables with S-FEEL, the fragment of FEEL that is considered most readable.
While full FEEL is more expressive, it is not suitable to be used by domain
experts without the aid of knowledge engineers. Moreover, it does not provide
a solution to other shortcomings, such as the lack of constraint reasoning and
optimization.

One of the systems that does effectively support constraint solving in a readable
DMN-like representation is the OpenRules system [103]. It enables modellers
to define constraints over the solution space by allowing Solver Tables to be
added alongside decision tables. In contrast to standard decisions, which assign
a specific value to an output, Solver Tables allow for setting constraints on
the output space. OpenRules offers a number of DecisionTableSolve-Templates,
which can be used to specify these constraints. It is possible to either use these
predefined templates, or to define such a template manually if the predefined
ones are not expressive enough. Even though this system extends the range of
applications that can be handled, there are three reasons why it does not offer
the ease of use for business users that we are after. First, because of the wide
range of available templates for solver tables, which differ from that of standard
decision tables, using the OpenRules constraint solver entails a steep learning
curve. Second, the solver’s functionality can only be accessed through the Java
API, which goes against the DMN philosophy [102, p. 13]. Third, because of
the lack of quantification in OpenRules, solutions are generally not independent
of domain size, which reduces readability.

Another DMN engine which supports a way to increase the expressiveness of
DMN is Corticon [105]. It implements a basic form of constraint solving by
allowing the modeller to filter the solution space. While this approach indeed
improves expressiveness, it decreases readability. Moreover, some constraints
can only be expressed by combining a number of rules and a number of filters.
For example, when expressing “all female monkeys are older than 10 years”,
this is split up in two parts; (1) a rule that states that if Monkey.gender =
female & Monkey.Age < 10 THEN Monkey.illegal = True and (2) a filter
that states that a monkey cannot be illegal: Monkey.illegal = False. There
are no clear guidelines about which part of the constraints should be in the filter
and what should be a rule. A more detailed comparison between OpenRules,
Corticon and cDMN is given in Section 3.6.

Calvanese et al. [28] propose an extension to DMN which allows for expressing
additional domain knowledge in Description Logic, which would not be possible



CDMN: SYNTAX & SEMANTICS 41

to model in DMN. In this way, they share our goal of extending DMN to express
more complex real-life problems. However, they introduce a completely separate
Description Logic formalism, which may be too complex for a domain expert
to use. While this approach makes sense if, e.g., a Description Logic ontology
for the domain is already available, it seems less suited for cases in which a
domain expert would need to construct this. Unfortunately, they have not
submitted any solutions of DMN Challenges, which leaves us unable to compare
its expressiveness in practice.

3.4 cDMN: Syntax & Semantics

While DMN allows modellers to elegantly represent a deterministic decision
process, it lacks the ability to specify constraints on the solution space. The
cDMN framework extends DMN, by allowing constraints to be represented in a
straightforward manner. It also allows for representations that are independent
of domain size by supporting types, functions, relations and quantification. To
select one or more solutions from the solution space, multiple inferences tasks
are supported.

We now explain both the usage and the syntax of every kind of table present in
cDMN.

3.4.1 Glossary

In logical terms, the “variables” of standard DMN correspond to constants (i.e.,
0-ary functions). cDMN extends these by adding n-ary functions and n-ary
relations. Similarly to OpenRules and Corticon, we allow the modeller to define
their vocabulary by means of a glossary. It consists of at most five glossary
tables, each enumerating a different kind of symbol. An example glossary for
the Doctor Planning challenge is given in Figure 3.1.

In the Type table, type symbols are declared. The value of each type is a set of
domain elements, specified either in the glossary or in a data table (see Section
3.4.3). An example is the type Doctor, which contains the names of doctors.
By convention, type symbols start with a capital letter. Besides user-declared
types, there are two built-in types: Int and Real, which respectively represent
the (infinite) domains of integer and real numbers.

In the Function table, a symbol can be declared as a function of one or more
types to another. There is no fixed syntax for functions; all types that appear
in the description are interpreted as arguments to the function (of this type)
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Type
Name Type Values
Doctor String Fleming, Freud, Heimlich, Eustachi, Golgi

Day String Mon, Tue, Wed, Thur, Fri, Sat, Sun
Time String Early, Late, Night

Function
Name Type

present doctor on Day at Time Doctor
nb shifts of Doctor on Day Int

nb nights of Doctor Int
day after Day Day

Constant
Name Type
Head Doctor

Relation
Name

Doctor is on leave
Doctor is available on Day at Time

Boolean
Name

Complete

Figure 3.1: An example cDMN glossary for the Doctor Planning problem.

and the remaining text is the name of the function. For example, nb nights
of Doctor has one argument of type Doctor. Intuitively, this function denotes
how many nights a doctor works per week: it maps each element of type Doctor
to an integer number. Functions with arity n > 1 can be defined by using
n arguments in the name, such as present doctor on Day at Time, which
assigns a doctor to every pair of Day and Time. The detection of arguments is
case sensitive, so doctor is not considered an argument, but Doctor is.

For each domain element, a constant with the same name is automatically
introduced, which allows the modeller to refer to this domain element in
constraint or decision tables. For instance, the modeller can use the constant
Fleming to refer to the domain element Fleming. In addition, the Constant
table allows also other constants to be introduced. Recall that such logical
constants correspond to standard DMN variables. In our example case, we use
a constant Head of type Doctor, which means it can refer to any of the domain
elements Fleming, Freud, Heimlich, Eustachi or Golgi.

In the Relation table, a verb phrase can be declared as a relation on one or
more given types. For instance, the relation Doctor is on leave denotes for
each Doctor whether they are on leave. Similarly to functions, there is no
strict syntax: n-ary predicates can be defined by using n arguments in the
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name. For example, Doctor is available on Day at Time is a relation with
three arguments (respectively of the type Doctor, Day and Time), that denotes
whether a doctor is available on a specific day, at a specific time.

The Boolean table contains boolean symbols (i.e., propositions), which are either
true or false. An example is the boolean Complete, which denotes whether the
planning is complete.

3.4.2 Decision Tables and Constraint Tables

As stated earlier in Section 2.2, a standard decision table uniquely defines the
value of its outputs. We extend DMN by allowing a new kind of table, called a
constraint table, which does not have this property.

Whereas decision tables only allow single values to appear in output columns,
our constraint tables allow arbitrary S-FEEL expressions in output columns.
Each row of a constraint table represents a logical implication, in the sense that,
if the conditions on the inputs are satisfied, then the conditions on the outputs
must also be satisfied. This means that if, for instance, none of the rows are
applicable, the outputs can take on an arbitrary value, as opposed to being
forced to null. In constraint tables, no default values can be assigned. Because
of these changes, a set of cDMN tables does not define a single solution, but
rather a solution space containing a set of possible solutions.

We introduce a new hit policy to identify constraint tables. We call this the
“Every” hit policy, denoted as “E*”, because it expresses that every implication
in the table must be satisfied. An example of this can be found in Figure 3.2,
which states that every doctor can work a maximum of one shift per day.

cDMN does not only introduce constraint tables, it also extends the expressions
that are allowed in column headers, both in decision and constraint tables.
There are two types of headers in cDMN: the term-denoting headers, and the
atom-denoting headers. A term-denoting header can consist of the following
five expressions.

1. A type Type. Such expression introduces a new variable x of type Type,
which is only defined in the scope of the table.

2. An expression of the form “Type called name”. This expression introduces
a new variable name of the type Type in the scope of the table.

3. A constant.

4. An arithmetic combination of term-denoting header expressions (such as
a sum of constants).
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Doctor works max 1 shift per day
E* Doctor Day nb shift of Doctor on Day

1 — — ≤ 1

Figure 3.2: Constraint table to express that a doctor works a maximum of one
shift per day.

5. A function expression such as “Function of arg1 and . . . and argn”, where
each of the argi is a term-denoting header expression, or a previously
introduced variable. This expression applies the function to its arguments.

An atom-denoting header consists of a relation expression such as “Relation
for arg1 and . . . and argn”, where each of the argi is a term-denoting header
expression, or a previously introduced variable. This expression applies the
relation to its arguments.

The first two kinds of term-denoting expressions are called variable header
expressions. They allow universal quantification in cDMN. Each input column
whose header consists of such a variable expression either introduces a new
universally quantified variable (we call this a variable-introducing column),
or refers back to a variable introduced in a preceding variable-introducing
column. Once a variable x has been introduced by an expression Type (item 1),
subsequent uses of the expression Type refer back to this variable x. Similarly,
once a named variable name has been introduced by an expression Type called
name (item 2), subsequent uses of the expression name refer back to this variable
name.

The table in Figure 3.2 shows an example of quantification in cDMN. It
introduces universally quantified variables of the type Doctor and Day, places
no restrictions on these variables (i.e. “—”), and hence states that every doctor
can only work a maximum of one shift on every day. To illustrate the use
of named variables, Figure 3.3 defines variables c1 and c2, both of the type
Country, and states that when those countries are bordering, they cannot have
the same color.

In summary, this subsection has discussed three ways in which cDMN extends
DMN. First, the hit policy “E*” changes the semantics of the table from
a definition to a set of implications. Second, constraint tables allow S-
FEEL expressions in the output columns. Third, cDMN allows quantification,
functions, predicates to be used in both decision tables and constraint tables.
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Bordering countries cannot share colors
E* Country called c1 Country called c2 c1 borders c2 Color of c1

1 — — Yes Not(Color of c2)

Figure 3.3: Example of a constraint table with quantification in cDMN, defining
that bordering countries can not share colors.

3.4.3 Data Tables

Typically, problems can be split up into two parts: (1) the general logic of the
problem, and (2) the specific problem instance that needs to be solved. Take
for example the map coloring problem: the general logic consists of the rule
that two bordering countries cannot share a color, whereas the instance of the
problem is the specific map (e.g., Western Europe) to color. cDMN extends the
DMN standard to include data tables, which are used to represent the problem
instances, separating them from the general logic. The format of a data table
closely resembles that of a decision table, with a couple of exceptions. Instead
of a hit policy, a data table has “data table” in its name5. Furthermore, only
basic values (integers, floats and elements of a type) are allowed in data tables.
It is also possible for columns to have more than one value in a certain cell, in
which case the row is instantiated for each of these values. Since functions in
cDMN models are always assumed to be total, a data table for a function should
be complete, i.e., there should be a value defined for every possible combination
of input arguments. As an example, a snippet of the data table for the Map
Coloring challenge is shown in Figure 3.4.

Data tables offer several advantages.

1. There is a methodological advantage: by separating data tables from
decision tables, it becomes easier to reuse the specification.

2. If the modeller chooses to enumerate the domain of a type in the glossary,
then the system checks that each value in a data table indeed belongs to
the domain of the appropriate type. This helps to prevent errors or typos
in the input data or glossary. If the modeller chooses not to enumerate
a type in the glossary, then the type’s domain defaults to the set of all
values in the data table.

3. The cDMN solver is able to compute solutions faster, due to a different
internal representation between data tables and decision tables.

5Starting with the soon-to-be-released cDMN v3.0.0 however, data tables use the D hit
policy instead. We have found that this makes more sense from a user perspective.
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Data Table: declaring which countries border
Country called c1 Country called c2 c1 borders c2

1 Belgium France, Luxembourg, Netherlands, Germany Yes
2 Germany France, Luxembourg, Belgium, Netherlands Yes

Figure 3.4: Data table describing countries and their neighbours

Goal
Get 3 models

Goal
Get all models

Goal
Maximize Score

Figure 3.5: Goal table examples

3.4.4 Goal Table

A standard DMN model defines a deterministic decision procedure. It is typically
always used in the same way: the external inputs are supplied by the user, after
which the values of the output variables are computed by forward propagation.

When using the cDMN solver, this is no longer the case. We can fill in as many
or as few variables as we want, and use the cDMN specification to derive useful
information about the not-yet-known variables. By employing a goal table,
modellers can state what the specification is to be used for: model expansion or
optimization. Model expansion is the task of finding an interpretation for each
of the symbols (a “model”, in the terminology of classical logic) that satisfies
all of the tables, and optimization is the task of finding the model with either
the lowest or highest value for a given term. Examples of such tables are given
in Figure 3.5.

In summary, a cDMN model consists of:

• A glossary;

• A set of data tables;

• A set of constraint tables;

• A set of decision tables;

• At most one goal table.

Apart from the glossary, all other kinds of tables are optional.
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3.4.5 Semantics of cDMN

The meaning of a cDMN specification is given by a possible world semantics.
As in classical logic, a possible world is represented by a structure S for a
vocabulary V . Such a structure consists of a domain D and an assignment of
each symbol σ ∈ V to an appropriate relation/function σS on D. We will define
the semantics of cDMN by means of a translation to FO(·).

The glossary defines a typed FO(·) vocabulary V in a straightforward way. The
data tables, together with the glossary, define a structure S for a part V ′ ⊆ V
of this vocabulary: i.e., the domain of S is defined, as well as the interpretation
σS of the symbols σ ∈ V ′; however, for the remaining symbols σ ∈ V ′ \ V , the
data tables do not yet define an interpretation. We will translate the decision
and constraint tables into a theory T of FO(·) sentences, such that the possible
worlds of a cDMN model are precisely the structures S′ that extend S with an
interpretation for the remaining symbols V ′ \ V in such a way that S′ |= T , i.e.,
that all the decision/constraint tables are satisfied.

What remains is to transform each of the decision and constraint tables into
an FO(·) sentence. Decision tables retain their usual semantics as described
in Section 2.2.1. We briefly recall this semantics. Each cell (i, j) of a decision
table corresponds to a formula Fij(x) in one free variable x. For instance, a
cell “≤ 50” corresponds to the formula “x ≤ 50”. The semantics of a table row
depends on the hit policy of the table. In a table T with hit policy U or A,
n input columns I and an output column o, each row i is represented by the
following definitional rule:

Fio(yo)←
∧
j∈I

Fij(xj). (3.1)

The rows of a table T with hit policy F are represented similarly, but are also
appended by a negation of the disjunction of the previous rows. This ensures
that a row cannot fire if a row higher in the table is already applicable.

Fio(xo)←
∧
j∈I

Fij(xj) ∧ ¬
( ∨

k∈1..i−1

( ∧
j∈I

Fkj(xj)
))
. (3.2)

A DMN decision table is then represented by a finite sequence of such definitional
rules, one for each row of the table. As an exception, tables with an atom-
denoting header as an output are treated slightly differently: rows in which the
output value is “False” are not included in the sequence. Indeed, such rows are
already implicitly represented, as definitions represent both the sufficient and
necessary conditions. For example, in standard DMN (which does not contain
function or relation expressions), the table in Figure 3.6 corresponds to:
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Define Adults
U Age of Person Person is Adult
1 ≥ 18 Yes
2 < 18 No

Figure 3.6: Decision table to define whether a person is an adult.

{Person_is_Adult ← Age ≥ 18.} (3.3)

Data tables are simply a specific case of decision tables.

The semantics of simple constraint tables (without quantification and functions)
is a conjunction of implications, as was described in [46]. The semantics of
constraint tables and decision tables differ in the interpretation of incomplete
tables: when no rows are applicable in constraint tables, its outputs can take
any arbitrary value instead of being forced to null (or some default value).

We now extend this semantics to take variables and quantification into account.
Our first step is to define a function that maps cDMN expressions to terms.
For the most part, this definition corresponds to that of [27].

We translate most of the entries c in a cell (i, j) of a table into a formula Fij(x)
in one free variable x. For an expression e, we denote by t(e) the logical term
that corresponds to e. In standard DMN, the only expressions we need to
consider are constants and arithmetic expressions built from constants. In this
case, we can simply consider t(e) = e. We will show below how to extend t to
the other kinds of expressions in cDMN. We now define:

• If c is of the form “θe” with θ one of the relational operators {≤,≥,=, ̸=},
then Fij(x) is the formula x θ t(e);

• If c is of the form Not e, then Fij(x) is x ̸= t(e);

• If c is a list e1, . . . , en, then Fij(x) is x = t(e1) ∨ . . . ∨ x = t(en). As a
special case, if c consists of a single expression e, then Fij(x) is x = t(e).

• If c is a range, e.g. [e1, e2), then Fij(x) is x ≥ t(e1) ∧ x < t(e2).

• A special case is when c contains “Yes” or “No”. In this case, the header
of the column must be an atom A and we translate it into Fij = A or
Fij = ¬A, respectively.
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We now extend this transformation to take into account the fact that certain
expressions – which we call variable expressions – must be translated to FOL
variables. There are two kinds of variable expressions, as we described in
Section 3.4.2. We define a mapping ν that maps each of these two kinds of
cDMN variable expressions to a typed FO(·) variable x of type T , which we
denote as x[T ]. We first define a mapping νH for variable expressions that
appear in a header H of a variable introducing column:

• The name T of a type is a variable expression. We define νH(T ) = xT [T ],
with xT a new variable of type T .

• An expression e of the form “Type called v” is a variable expression. We
define νH(e) = v[Type].

We now define a general mapping ν as follows:

• If a variable expression e appears in a header H of a variable introducing
column, then ν(e) = νH(e).

• If a variable expression appears elsewhere, then its value is νH(e), where
H is the unique variable introducing header that introduced the variable
expression e (see Section 3.4.2).

Such a variable expression introduces a new variable in the scope of the table
at hand. Given this function ν, we now define the following mapping tν(·) of
cDMN expressions to terms.

• The interpretation of a constant, integer or floating point number
expression is the constant or number itself. That is, for a constant c,
tν(c) = c; similarly, for an integer or floating point number n, tν(n) = n;

• For an arithmetic or other expression e of the form e1θe2 with θ ∈
{+,−, ∗, /,<,>,≤,≥,=, ̸=,∨,∧}, we define tν(e) = tν(e1) θ tν(e2); In
other words, the interpretation of such an expression is the operator
applied to the interpretation of its sub-expressions.

• The interpretation of a variable expression is the corresponding variable,
i.e., for a variable expression v, we define tν(v) = ν(v).

• If c is of the form #Type, then tν(c) = #{x[Type] : true}, an FO(·)
aggregate that denotes the number of elements in the type itself.
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• The interpretation of a function expression is that function applied
to the interpretation of each of its arguments. For a function
expression F of the form “Function of arg1 and . . . and argn”, we define
tν(F ) = Function(tν(arg1), . . . , tν(argn)).

• The interpretation of a relation expression is that relation applied
to the interpretation of each of its arguments. For a relation
expression R of the form “Relation for arg1 and . . . and argn”, we define
tν(X) = Relation(tν(arg1), . . . , tν(argn)).

We are now ready to define the semantics of a constraint table. If I is the set
of input columns of the table, O the set of output columns and V ⊆ I the set
of variable introducing columns, we define the semantics of the table T as the
following formula ϕT :

∀
l∈V

ν(Hl) :
∧
i∈R

(∧
j∈I

tν
(
Fij(tν(Hj))

)
⇒
∧

k∈O

Fik

(
tν(Hk)

))
(3.4)

where we quantify over each variable x of type U for which x[U ] is the variable
ν(Hl) that corresponds to the variable introducing column l ∈ V . In other
words, for each tuple of elements of the variables’ types, all table rows should
be satisfied. Such a row is satisfied when, if all input conditions are met, all its
output conditions are also met.

Decision tables with multiple hit policies have a different semantics. We first
describe the semantics of “C+”, “C<” and “C>” tables, which are almost
identical. We define the semantics of a C+ table with one output header Hk:

∀
w∈W

ν(Hw) : tν(Hk) =
∑
i∈R

sum
{
x̄ :

∧
j∈I

Fik

(
tν(Hj)

)
: Fik((x̄))

}
(3.5)

Here, W ⊆ V is the subset of variable introducing columns V of which the
variable appears in the output header tν(Hk), x̄ are the variables introduced by
the remaining variable introducing columns U = V \W (so x̄ = (tv(H))H∈U ),
and sum{x̄ : φ(x̄) : F (x̄)} denotes the sum of all F (x) for which φ(x) holds.

This formula can be explained as follows. First, when no variables are introduced
(i.e., U = V = W = ∅), this formula sums the output values Fik for each of the
rows i that meet the input criteria

∧
j∈I Fij . This is precisely the definition of

a standard DMN C+ table.

Second, when variables are introduced in a table, but the output header contains
no variables (W = ∅), it is again assigned a sum of terms. For each row i and
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Number of invited guests
C+ Person Item Item in basket of Person charge for Person

1 — — Yes price of Item

Figure 3.7: Decision table that determines the charge of a person, based on the
contents of their shopping basket.

tuple x̄ that satisfy
∧

j∈I Fij(x̄) is satisfied, the value Fik(x̄) is included in the
sum.

Third, when the output header does contain variables, the table defines the value
not of a single constant Hk, but of a function Hk(ν(w̄)). For each appropriate
tuple ā, the value of Hk(ā) is defined by the same sum as before.

We illustrate this semantics with an example. In the decision table shown
in Figure 3.7: W = {Person}, ν(Hw) = p[Person], tν(Hk) = charge(p), x̄ =
y[Item], tν(F1k(x̄)) = price(y) and

∧
j ∈ I Fij(tν(Hj)) = in_basket(y, p).

This results in the logical sentence:

∀ p[Person] : charge(p) = sum{Item : in_basket(Item, p) : price(Item)}

The semantics of C< and C> tables are defined analogously, where, instead of
summing all values, the minimum and maximum value is selected respectively.

Decision tables with a C# hit policy have a slightly different semantics, i.e.,

∀
w∈W

ν(Hw) : tν(Hk) =
∣∣{x | ∃

u∈U
ν(Hu) :

∨
i∈R

(
tν(Fik(x)) ∧

∧
j∈I

tν(Fij(Hj))
)}∣∣
(3.6)

Here, U and W are defined analogously as in Equation 3.5.

This formula can be explained as follows: first, when the output header contains
no variables (W = ∅ and U = V ), the aggregate expression counts for how
many x’s there exists an assignment of values to the variables P that causes at
least one row i of the table to be applicable, in the sense than both its input
and output columns are satisfied. The output header is assigned the size of the
set x given that there exists an expansion of variables for which one of the rules
that has x as output fires.

As before, when the output header does contain variables, for each tuple ν(w̄),
the value of Hk(ν(w̄)) is defined in this way.

For instance, in the decision table in Figure 3.8: W = ∅, tν(Hk) =
nb_invitations, U = {Person}, ν(Hu) = p[Person]. For the first row,
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Number of guests
C# Person Person is friend Person is family nb invitations

1 — Yes — Person
2 — — Yes Person
3 — — Yes spouse of Person

Figure 3.8: Decision table that counts the number of invited guests.

(
F1k(tν(x)) ∧

∧
j∈I F1j(tν(Hj)) is equivalent to x = p ∧ is_friend(p). The

second row is defined analogously to the first row. In the third row,
F3k(tν(x)) ∧

∧
j∈I F3j(tν(Hj)) translates to x = spouse(p) ∧ is_family(p).

Consequently, the table in Figure 3.8 is logically equivalent to:

nb_invitations =
∣∣{x | ∃p[Person] :

x = p ∧ is_friend(p)∨

x = p ∧ is_family(p)∨

x = spouse(p) ∧ is_family(p)}∣∣
(3.7)

In the table of Figure 3.8, the output header is a constant (nb_invitations),
therefore no quantification is required. The value of this constant is calculated
as the number of persons that are either friends, family or the spouse of family,
while ensuring that duplicate persons (such as friends that are also family) are
not counted multiple times.

With this, we have defined the semantics of cDMN. The goal table that can
also be included in a cDMN specification does not contribute to the semantics,
but simply tells the cDMN solver what to compute; this can either be a number
of possible worlds (one, all, or a specific number of them), the possible world
that minimizes/maximizes a given term, or the consequences of the model
(propagation).
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3.5 Implementation

Because cDMN is more expressive than DMN, it cannot be handled by existing
solvers. We have therefore implemented a new solver6, which we describe in
this section. It consists of two parts: IDP-Z3 as the reasoning engine, and a
converter from cDMN to FO(·). The input of the system is a cDMN model
created in a spreadsheet in the .XLSX format. Such a spreadsheet allows for
straightforward creation of cDMN tables, and can show a good overview over
the entire model. The cDMN to IDP converter is written in Python, and works
in a two-step process.

First, the converter interprets all tables in a spreadsheet, and converts them
into Python objects. For example, the converter parses all the glossary
tables and converts them into a single Glossary object, which then creates
Type and Predicate/Function objects. The constraint and decision tables
are then evaluated individually. A lex/yacc parser inspects each cell and
parses it as a cDMN expression, such as “Function of arg1 and arg2”.
Such cDMN expressions are then interpreted using the constructed Glossary
object, and transformed into an FO(·) expression, e.g. “Function(arg1, arg2)”.
For example, the expression “nb shift of Golgi on d2” is transformed into
“nb_shift_of_Doctor_on_Day(Golgi, d2 )”. Each cDMN table is then converted
to an FO(·) formula, as described in Section 3.4.5.

An overview summarizing all the relations between cDMN tables, Python
objects and IDP blocks can be found in Figure 3.9. More detailed information
about this conversion can be found in the cDMN documentation7, along with
an explanation of the usage of the solver and concrete examples of cDMN
implementations.

Besides cDMN tables, the solver also supports most standard DMN tables
and constructs. More specifically, it supports tables with the “U”, “A”, “F”,
“C+”, “C>” and “C<” hit policy, and the full S-FEEL language. While there
is currently no support for the “C”-tables, which collect the outputs of all
matching rows in a list, it is possible to use a cDMN relation to emulate such a
table’s behaviour.

Another feature of the solver is the ability to link to the IDP-based interface
Interactive Consultant [32], which is a user-friendly interface for interactively
solving configuration problems. It shows users the consequences of their choices
and provides explanations for these consequences. Thus by combining cDMN

6https://gitlab.com/EAVISE/cdmn/cdmn-solver
7www.cdmn.be
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Figure 3.9: An overview of the inner workings of the cDMN solver

and the Interactive Consultant interface, a KB can be both constructed and
interacted with in a user-friendly manner.

3.6 Results and discussion

In this section we first look at three of the DMCommunity challenges, each
showcasing a feature of cDMN. For each challenge, we qualitatively compare
the DMN implementations from the DMCommunity website with our own
implementation in cDMN. Afterwards, we compare all challenges on size and
quality. We end our discussion with a section on the integration of cDMN in
business processes.

3.6.1 Constraint tables

Constraint tables allow cDMN to model constraint satisfaction problems in a
straightforward way. For example, in Map Colouring, a map of six European
countries must be coloured in such a way that no neighbouring countries share
the same color. For this challenge, a pure DMN implementation was submitted,
of which Figure 3.10 shows an extract. The implementation uses complicated
FEEL statements to solve the challenge. While these statements are DMN-
compliant, they are nearly impossible for a business user to write without help.
In cDMN, we can use a single straightforward constraint table to solve this
problem, as shown earlier in Figure 3.3. Together with the glossary and a data
table (Figure 3.4), this forms a complete yet simple cDMN implementation.
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Figure 3.10: An extract of the map coloring solution in standard DMN with
FEEL.

3.6.2 Quantification

Among others, quantification proves useful in the Monkey Business challenge.
In this challenge, we want to know for four monkeys what their favourite fruit
and their favourite resting place is, based on some information. There are two
DMN-like submissions for this challenge: one using Corticon, and one using
OpenRules.

One of the pieces of information is: “The monkey who sat on the rock ate
the apple.” The OpenRules implementation has a table with a row for each
monkey, which states that if this monkey’s resting place was a rock, their fruit
was an apple (Figure 3.11a). In other words, for n monkeys, the OpenRules
implementation of this rule requires n lines. Because of quantification, cDMN
requires only one row, regardless of how many monkeys there are (Figure 3.11b).
The Corticon implementation also uses a similar quantification for this rule.

Another rule states that no two monkeys can have the same resting place or
fruit. In both the Corticon and OpenRules implementations, this is handled by
two tables with a row for each pair of monkeys. The Corticon tables are shown
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(a) Open Rules
Monkey Constraints
E* Monkey Place of Monkey Fruit of Monkey

1 . . . . . . . . .
2 — Rock Apple
3 . . . . . . . . .

(b) cDMN

Figure 3.11: An extract of Monkey Business implementation in (a) OpenRules
and (b) cDMN, specifying “The monkey who sits on the rock is eating the
apple”.

in Figure 3.12a. Each row either states that two monkeys have different fruit,
or that they have different place. Therefore, n monkeys require n×(n−1)

2 rows.
By contrast, the cDMN implementation in Figure 3.12b requires only a single
row to express the same.

We conclude that of all the solutions that were submitted to the DMCommunity,
only the cDMN solution has quantification powerful enough to represent the
constraints of this puzzle in a way that is independent of the size of the problem
instance.

3.6.3 Optimization

In the Balanced Assignment challenge, 210 employees need to be divided into 12
groups, so that every group is as diverse as possible. The department, location,
gender and title of each employee is known. This is quite a complex problem
to handle in DMN. As such, of the four submitted solutions, only one was
DMN-like: an OpenRules implementation, using external CP/LP solvers. The
logic for these external solvers is written in Java. Although the code is fairly
compact, it cannot be written without prior programming knowledge. The
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(a) Corticon
Different Preferences
E* Monkey called m1 Monkey called m2 Place of m1 Fruit of m1

1 — not(m1) not(Place of m2) not(Fruit of m2)

(b) cDMN

Figure 3.12: An extract of the Monkey Business implementation in (a) Corticon
and (b) cDMN, defining that no monkeys share fruit and no monkeys share the
same place.

Diversity Score

C+ Person
called p1

Person
called p2

Dept
of p1

Loc
of p1

Gender
of p1

Title
of p1

Group
of p1 Score

1 — — Dept
of p2 — — — not(Group

of p2) 1

2 — — — Loc
of p2 — — not(Group

of p2) 1

3 — — — — Gender
of p1 — not(Group

of p2) 1

4 — — — — — Title
of p1

not(Group
of p2) 1

Figure 3.13: The decision tables and constraint table for Balanced Assignment.

optimization support in cDMN allows us to represent the problem with two
decision tables and one constraint table. The table Diversity score, shown in
Figure 3.13, adds 1 to the total diversity score if two similar people are in a
different group. Maximizing this score then results in the most diverse groups.

3.6.4 Overview of all challenges

Of the 24 challenges we considered, cDMN is capable of successfully modelling
22. In comparison, there were 12 OpenRules implementations and 12 Corticon
implementations submitted. Note that we cannot rule out that OpenRules and
Corticon might be capable of modelling more challenges than those for which a
solution was submitted.
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To compare cDMN to other approaches, we focus on two aspects. First, we
quantitatively measure the size of the solution. This was measured by counting
the number of cells used in all the decision and constraint tables. We exclude
meta information (such as the cDMN glossary) and the specification of a
concrete problem instance (such as the cDMN data tables), because the ways
in which different solvers handle this are too diverse to allow meaningful
comparison. Table 3.3 shows that cDMN and Corticon alternate between
having the fewest cells, and that OpenRules usually has the most. In general,
OpenRules implementations require many cells because each cell is very simple.
For instance, even an “=” operator is its own cell. The Corticon implementations,
on the other hand, contain more complex cells, rendering them more compact.

Second, we also qualitatively assess the readability and scalability of the solutions.
The motivation for this is that model size, as we have defined it above, does
not tell the whole story. Indeed, using very complex expressions might lead to
small tables, that are nevertheless hard to figure out.

In general, we find that OpenRules implementations are usually easier to read
than their Corticon counterparts. An example comparison between cDMN and
Corticon can be seen in Figure 3.14a and 3.14c. Each figure shows a snippet of
their Make a Good Burger implementation, in which the food properties of a
burger are calculated. While the Corticon implementation is more compact, it
is less interpretable, less maintainable and dependent on domain size. If the
user wants to add an ingredient to the burger, complex cells need to be changed.
In cDMN, we introduce a type Ingredient, a number of functions such as
Amount of Ingredient and Fat in Ingredient, and calculate the constant
Total Fat as the product of the fat in a specific ingredient and the amount
of that ingredient used. This enables the user to simply add new ingredients
or change the amount of nutrition values in the data table, without having
to change the model. The OpenRules implementation (Figure 3.14b) is fairly
readable and modular too, but, it requires a custom scalar product decision
table.

Another comparison between cDMN and OpenRules can be found in Figure
3.15a and 3.15b. Here we show a snippet of the Who Killed Agatha? challenge.
Both show a translation of the following rule: “A killer always hates, and is not
richer than, his victim.” By using constraints and a constant (Killer), cDMN
allows us to form a more scalable table. Indeed, if the police ever find a fourth
suspect, they can easily add the person to the data table without needing to
change anything else.

In Section 3.2, we identified four relevant problem properties. We now suggest
that each property is tackled more easily by one or more of the additions cDMN
proposes.
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Table 3.3: Comparison of the number of cells used per implementation. Lowest
number of cells per challenge in grey. Other implementations: 1. FEEL, 2.
Blueriq, 3. Trisotech, 4. DMN

cDMN Corticon OpenRules Others
Who Killed A.? 53 54 176
Change Making 26 14
A Good Burger 35 20 95 761

Define Dupl. 20 19 21
Coll. of Cars 26 45 481

Monkey Business 47 64 150
Vacation Days 38 32 31 142

Family Riddle 76 22
Cust. Greeting 88 205
Online Dating 45 78

Class. Employees 36 21 70 343

Reinder Order 14 64 111 3704

Zoo, Buses, Kids 24 43
Balanced Assign. 55 30
Vac. Days Adv. 124 97
Map Coloring 21 344

Map Color Viol. 21
Crack The Code 48
Numerical Haiku 41

Nim Rules 22 61
Doctor Planning 102

Calculator 33

Aggregates needed Figure 3.14c shows how aggregates are both more readable
and scalable when using quantification. Moreover, cDMN allows the use
of aggregates for more complex operations such as optimization or defining
constraints.

Constraints Constraints can be conveniently modelled by constraint tables,
such as the constraints in Figure 3.15b, which state that the killer hates Agatha,
but is no richer than her. The addition of constraint tables allows for an obvious
translation from the rule in natural language to the table.

Universal quantification Problems which contain universal quantification
can be compactly represented, as can be seen in Figure 3.2. This table states
that no doctor works more than one shift per day.
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(a) Corticon

(b) OpenRules
Nutrition
C+ Item Total Sodium Total Fat Total Calories Total Cost

1 — Nb of Item
* Sodium in Item

Nb of Item
* Fat in Item

Nb of Item
* Calories of Item

Nb of Item
* Cost of Item

E* Total Sodium Total Fat Total Calories
1 < 3000 < 150 < 3000

(c) cDMN

Figure 3.14: Calculating the food properties of a burger in Corticon, OpenRules
and cDMN.

Table 3.4: Comparison between the problem properties and their cDMN answers.

Property cDMN answer
Aggregates needed Quantification, expressive data
Constraints Constraint tables, quantification, expressive data
Universal quantification Quantification
Optimization Optimization, expressive data

Optimization Because cDMN directly supports optimization, problems
containing this property are easily modelled. Furthermore, by the addition of
more complex data types, optimization terms can be defined in a more flexible
manner. An example can be found in Balanced Assignment in Figure 3.13.
A summary of each problem property and its cDMN answer can be found in
Table 3.4.
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(a) OpenRules
Killer

E* Killer hates Agatha Killer richer than Agateha
1 Yes No

(b) cDMN

Figure 3.15: Implementation of “A killer always hates and is no richer than
their victim” in OpenRules and cDMN.

3.6.5 Process integration

DMN models are often integrated into a larger business process model [70, 14].
Such a business process model consists of a sequence of steps that describe
how to execute a specific process, such as for example the steps required for
verifying a customer’s eligibility for a bank loan. The Business Process Model
and Notation (BPMN) is a standard published by the OMG group for this
purpose.

The integration of DMN into BPMN is motivated by the separation of concerns
paradigm [19], in which the decision logic is separated from the process, to
increase readability and maintainability of the overall process model. If a DMN
model is present in a BPMN model, it can be used to dictate the flow of the
process using a so-called gateway, depicted by a diamond. For example, the
BPMN model in Figure 3.16 describes the flow for buying a ticket to a museum.
After a visitor has selected the exhibits they want to visit, the price of the ticket
is determined by a decision model, as indicated by the table icon. The output of
the decision model then dictates whether a payment is required, or if the ticket
can be printed directly (in the event that only free exhibits were selected).

In principle, cDMN models could also be used in a BPMN model to direct
the flow of a process. When a DMN model is used in BPMN, the process is
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Figure 3.16: Example of a BPMN model with DMN

Figure 3.17: Example of a BPMN model with cDMN

always directed based on the value of the top level variable (such as Price > 0
or Eligible = Yes) of the DMN model. By contrast, the integration of cDMN
also allows for other criteria. For example, the model in Figure 3.17 describes
the process of colouring a map of countries, based on a list of countries and a
list of possible colours. Here, we have added a gateway that verifies if a suitable
solution was found. If none was found (because too few colours were supplied),
more colours are added until a solution becomes possible. In other words, the
direction of the process is based on whether or not a satisfying solution for the
cDMN constraints could be found. Other examples of possible gateway criteria
are verifying if at least n solutions exist, if a solution with a value for variable
x greater than 5 exists, what the maximum value of variable y is, and more.

3.7 Conclusion

In this chapter, we presented an extension to DMN, which aims at modelling
complex problems while maintaining DMN’s level of readability. This
extension, which we call cDMN, adds constraint modelling, more expressive
data representations (such as types and functions), quantification and more.

Constraint modelling allows a user to define a solution space instead of a single
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solution. The cDMN solver can generate a desired number of models, or generate
the model which optimizes the value of a specific term. Unlike DMN, which
only knows constants, cDMN also supports the use of functions and predicates,
which allow for more flexible representations. Together with quantification, this
allows tables to be constructed in a compact and straightforward manner, while
being independent of the size of the problem. This improves maintainability
and scalability of tables.

By comparing our cDMN implementations to the implementations of other
state-of-the-art DMN-like solvers, we can conclude that cDMN succeeds in
increasing the expressiveness of DMN. Moreover, our qualitative analysis of
these examples suggest that the cDMN representations are indeed typically
quite readable and maintainable. In future work, we plan to investigate this in
a more detailed and quantifiable way, and to compare the user-friendliness and
complexity of cDMN to that of DMN itself.

Other future work consists of possibly extending the cDMN notation to be
able to represent disjunctions in the output of a constraint table, existential
quantification, quantification in output columns and increase compactness of
the created models. Additionally, we are planning on testing this notation
in a number of real-life use-cases to verify its applicability in a multitude of
domains. The insights gained during the implementation of these use cases, will
allow us to define a graph-based representation of cDMN models, akin to the
DRD for DMN.





Chapter 4

Probabilistic Decision Model
and Notation

Probabilistic modelling systems such as ProbLog combine logical
reasoning with probabilities. However, ProbLog rules are often
difficult to interpret for domain experts with no familiarity with
Probabilistic Logic Programming (PLP). The goal of this chapter
is to investigate a DMN extension for PLP, to make probabilistic
modelling more accessible.

This chapter is based on work presented at the Tenth International Workshop
on Statistical Relational AI, October 2021 [133]; and DecisionCAMP 2023,
September 2023 [123]. The research was performed in collaboration with Victor
Verreet and Luc De Raedt.

65



66 PROBABILISTIC DECISION MODEL AND NOTATION

4.1 Introduction

While DMN’s deterministic nature is one of the main advantages of the notation,
there exist applications for which it is necessary to be able to model uncertainty.
Indeed, in real life, uncertainties can be found in many problem domains. While
it is technically possible to “mimic” probabilities in DMN in an ad-hoc way,
the user-friendliness of the resulting models would be significantly reduced. As
such, a more structural approach based on DMN is preferred; after all, DMN
already forms an excellent foundation to build on when designing a user-friendly
notation for probabilistic logic.

In the state-of-the-art, there exist many concrete tools for probabilistic
reasoning. One such tool is ProbLog [43], which combines logical reasoning
with probabilities. It supports many inference tasks, such as marginal and
conditional probability calculations, allowing it to be used for problems such as
Bayesian reasoning and inference in social networks [66]. However, ProbLog
rules can be difficult to interpret for domain experts with no familiarity with
Probabilistic Logic Programming (PLP).

In this chapter, we present a preliminary version of Probabilistic Decision Model
and Notation (pDMN): a DMN-like notation for probabilistic logic that aims
to combine DMN’s intuitive notation with ProbLog’s powerful probabilistic
reasoning capabilities. Our goal is to close the gap between ProbLog experts
and domain experts, by lowering the threshold to understand and interpret
probabilistic models, and to possibly allow domain experts to create the models
themselves.

The contributions of this chapter are as follows:

1. the pDMN notation for probabilistic programming, which aims to be
user-friendly;

2. the translation principles of pDMN into ProbLog;

3. an implementation of a ProbLog-based solver for pDMN.

This chapter is structured as follows. First, we go over the ProbLog concepts
necessary for this work in Section 4.2. We then introduce our pDMN syntax
in Section 4.3, and elaborate on how it differs from standard DMN. We also
present the translation principles of pDMN into ProbLog in Section 4.4, and very
briefly go over our implementation of a pDMN solver in Section 4.5. Afterwards,
Section 4.6 shows a full pDMN implementation of a well-known example, to
show the notation in action. Finally, we conclude our preliminary work in
Section 4.7, and lay out the future work ahead.
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4.2 Probabilistic Logic Programming

ProbLog [43] is a probabilistic extension of Prolog. A ProbLog program consists
of a set of probabilistic facts and a set of Prolog rules. Probabilistic facts are
of the form Pf :: f , with Pf ∈ [0, 1] a probability and f an atom. The atom f
is true or false with probability Pf and 1− Pf respectively. Rules are written
as h :− b1, b2, . . . , bn where the atom h is called the head and bi are the body
atoms. The head of a rule may never occur in a probabilistic fact. Whenever
all the atoms in the body of a rule are true, the head atom is true as well. A
rule can also be annotated with a probability, but this is syntactic sugar for
adding a unique atom to the body which is true with the annotated probability.
Symbolically, the rule

Pr :: h :− b1, b2, . . . , bn (4.1)
is translated into

h :− b1, b2, . . . , bn, fr and Pr :: fr (4.2)

with fr a newly created atom. ProbLog also allows annotated disjunctions (ADs),
written as

P1 :: f1;P2 :: f2; . . . ;Pn :: fn (4.3)
with

∑
i Pi ≤ 1. An AD denotes a probabilistic choice where every atom fi is

selected to be true with probability Pi, but at most one atom in the AD can be
selected. If

∑
i Pi < 1 it is possible that none are true.

An interpretation is a truth value assignment to every atom occurring in the
program. A model of the program is an interpretation that satisfies every rule
and follows the closed world assumption. The closed world assumption states
that an atom can only be true in a model whenever it can be derived through at
least one rule. The probability of any model M of the program is the product
of the probabilities of the facts in the model. The probability of an atom q is
the sum of the probabilities of the models in which that atom is true. Hence,

P (q) =
∑

M |=q

∏
f∈M

P (f) (4.4)

where the sum runs over all models M in which q is true and the product runs
over all the probabilistic facts f in the model M . The probability P (f) is the
user given value Pf if f is true in the model M , and 1 − Pf otherwise. An
example of a ProbLog program is given in Example 1.
Example 1. Consider the program

0.8 :: a. c :− a.

0.3 :: b(1); 0.5 :: b(2); 0.2 :: b(3). c :− b(1).
(4.5)
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where we are interested in the probability of c. This program has 6 models,
{a, b(1), c}, {a, b(2), c}, {a, b(3), c}, {not(a), b(1), c}, {not(a), b(2),not(c)} and
{not(a), b(3),not(c)}, where c is only true in the first 4 models. Therefore, the
probability of c is

P (c) = 0.8 · 0.3 + 0.8 · 0.5 + 0.8 · 0.2 + 0.2 · 0.3 = 0.86 (4.6)

In the past ProbLog has been applied to a variety of problems, such as object
tracking in robotics [104], modelling protein interactions [64], predicting missing
edges in biological networks [43] and spreadsheet completion [41]. Furthermore,
ProbLog has been extended with neural networks [88], decision-theoretic
reasoning [120] and continuous distributions [50], allowing for a broad range of
use cases.

4.3 pDMN: Syntax

We now elaborate on the syntax of pDMN, our DMN extension for probabilistic
logic programming. In pDMN, there are three types of tables: glossary tables,
decision tables, and the query table.

4.3.1 Glossary

Variables in pDMN, in contrast to standard DMN, are typed n-ary functions and
predicates. In order to correctly identify these variables and their arguments,
pDMN introduces three glossary tables in which these should be declared: the
Type table, the Predicate table and the Function table. These glossary tables
contain the required meta-information to correctly interpret the pDMN model.
This is analogous to the approach used in cDMN.

The Type table declares the types used in a pDMN model, together with their
domain of elements. For example, the Type table in Fig. 4.1 declares a type
Person, which consists of two elements, ann and bob, and a type Vaccine, which
consists of the elements a, b and n(one).

The Predicate table declares n-ary predicates. There is no fixed naming syntax
for predicates; the arguments of a predicate are those types that appear in
its description, and the remaining string is considered the predicate’s name.
For example, in the glossary of Fig. 4.1, Person is infected represents a unary
predicate is_infected, which denotes for every Person (i.e., ann and bob) whether
they are infected. Similarly, Person contacted Person is a binary predicate
contacted that denotes contact between people.
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Type
Name Elements
Person ann, bob
Vaccine a, b, n

Function
Name Type

vaccine of Person Vaccine

Predicate
Name

Person is infected
Person contacted Person

Figure 4.1: Example of a pDMN glossary

The Function table declares n-ary functions. Analogously to predicates, the
function’s name contains its arguments. In contrast to predicates, however,
functions map their arguments to the type listed in the Type column of the
glossary table, instead of to a boolean. For example, vaccine of Person denotes
the Vaccine for each Person, i.e., it maps every person (ann and bob) to a
vaccine (a, b, n).

4.3.2 Decision Tables

pDMN extends standard DMN decision tables with three new concepts:
probabilities, the new Ch(oice) hit policy, and quantification. We will briefly
touch on each concept, and show an example. Firstly, pDMN allows probabilities
in the cells of an output column. For example, the h1 and h2 tables shown in
Fig. 4.2a respectively define a probability of 0.5 and 0.6 to flip a coin on its
head. Note that we use Yes and No to represent true and false for predicates.
In a table containing probabilities, the output values (such as Yes) are not
listed in the rules directly, but rather in a separate row above the rules, which
contains only output values. If the conditions of a rule are met, the probability
of the output variable taking on a specific value is equal to the value that is
listed below this output value in that particular row.

The second new concept is the Ch(oice) hit policy, which denotes that the
output values for the output variable are mutually exclusive (i.e., only one can
be assigned to the variable). This is demonstrated in the table in Fig. 4.2b,
which states in its first row that an ordinary die has an equal 1/6 chance for
any die value, and in its second row that a biased die has a higher chance of
resulting in six. However, because of the Choice hit policy, the die can never
e.g. be assigned both “one” and “two” at the same time. If, for instance, the
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h1
U heads1

Yes
1 0.5

h2
U heads2

Yes
1 0.6

heads
U heads1 heads2 twoHeads someHeads
1 Yes Yes Yes Yes
2 Yes No No Yes
3 No Yes No Yes
4 No No No No

(a) Example pDMN implementation describing two coinflips.

Throwing Dice
Ch biased die value

one two three four five six
1 No 1/6 1/6 1/6 1/6 1/6 1/6
2 Yes 0.1 0.1 0.1 0.1 0.1 0.5

(b) Example of a pDMN table with the “Choice” hit policy.

Vaccine
Ch vaccine of X

a b n
1 0.36 0.63 0.01

Infection
U X contacted Y Y is infected vaccine of X X is infected

Yes
1 Yes Yes n 0.8
2 Yes Yes a 0.1
3 Yes Yes b 0.2

(c) Snippet of a pDMN model implementing infections with vaccination.

Figure 4.2: Snippets of various pDMN examples.
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Query
twoHeads

someHeads

(a)

Query
vaccine of bob
X is infected

(b)

Query
die value = six

(c)

Figure 4.3: Example Query tables.

table had the Unique hit policy, it would be possible to have an outcome in
which the die has multiple face values at once.

The third and final addition in pDMN is quantification. For example, the
Vaccine table shown in Fig. 4.2c expresses that “For every Person X, there is a
chance of 36% that they have received vaccine a, a 63% chance on vaccine b,
and a 1% chance of being unvaccinated.” The X here represents a quantification
variable of type Person. Similarly, the Infection table expresses that every
person X who had contact with an infected person Y could now also be infected,
depending on their vaccine’s performance, or lack thereof.

4.3.3 Query

The Query table is the third type of table present in a pDMN model, and is
used to denote which symbols’ probability should be calculated. Querying the
probability of a predicate is done by adding it to the query table, either with
specific elements of a type or with a quantification variable. To query a function,
the table should contain a cell of the form func_name(arg) = val. Here too, it
is allowed to write down a specific element of a type or a quantification variable.
Examples of query tables are shown in Fig. 4.3. The table in Fig. 4.3a verifies
the probability of flipping two heads and some heads with coins. Fig. 4.3b
demonstrates querying predicates with a specific variable value (bob), or a
quantification variable (X). In the latter case, the probability of the predicate
is calculated for every element of the type Person. Lastly, Fig. 4.3c, in which
we want to know the probability that a die lands on a six, shows the querying
syntax for functions.

4.4 Translating pDMN to ProbLog

To apply pDMN models to solve problems, we translate them into ProbLog.
We will now go over the general translation principles. Intuitively, every row of
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a U-table represents a rule in ProbLog, with the input variables forming the
body, and the output variable forming the head. If there are multiple output
variables present, a rule is created for each of them. For example, the heads
table in Fig. 4.2a translates to the ProbLog rules shown in (4.7). Note that the
rows in which the output was No are not translated, as these do not need to be
explicitly formulated in ProbLog due to the closed world assumption.

twoHeads :− heads1 , heads2 .
someHeads :− heads1 , heads2 .
someHeads :− heads1 ,not(heads2 ).
someHeads :− not(heads1 ), heads2 .

(4.7)

If the output rows of a table contain probabilities, these are added to their
respective ProbLog rules or facts. E.g., the h1 table in Fig. 4.2a translates to
the fact 0.5 :: heads1 .

As explained before, DMN also provides the F(irst) hit policy. Consider again
the heads table in Fig. 4.2a, except we now consider it as an F-table. To
translate the first hit behaviour to ProbLog, for any row in the table we need
to add the negation of all the previous rows to the body of the translation. To
do this, dummy variables are introduced, representing whether a row has fired
or not. The resulting ProbLog translation for this example is shown in (4.8),
where r1 , r2 and r3 represent the dummy variables.

r1 :− heads1 , heads2 . twoHeads :− r1 .
r2 :− heads1 ,not(heads2 ). someHeads :− r1 .
r3 :− not(heads1 ), heads2 . someHeads :− r2 ,not(r1 ).

someHeads :− r3 ,not(r1 ),not(r2 ).

(4.8)

Tables with the newly introduced Ch(oice) hit policy are translated into
ProbLog’s annotated disjunctions. For example, the table shown in Fig. 4.2b
assigns a value to the 0-ary die value function. In ProbLog, n-ary functions
are represented by an (n+ 1)-ary predicate, resulting in the unary die_value
predicate:

1/6 :: die_value(one); . . . ; 1/6 :: die_value(six) :− not(biased).
1/5 :: die_value(one); . . . ; 1/2 :: die_value(six) :− biased.

(4.9)

Types declared in the Type table in pDMN are represented by unary predicates
in ProbLog, as the latter is not a typed language. Additionally, the contents
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of the Elements column are translated into facts. E.g., Person, as shown in
the Type table in Fig. 4.1, translates to the facts person(ann) and person(bob).
When translating a decision table containing quantification, the type of the
quantification variable(s) is derived from the glossary, and an atom is added to
the ProbLog rule for each variable to denote its type.

For example, the pDMN model in Fig. 4.2c translates to the ProbLog program
shown in (4.10). Note that we shortened some of the variable names to better
fit the page size. Now consider e.g. the Infection table: it contains two
quantification variables, X and Y , both of type Person. As such, this is denoted
in the ProbLog rules by adding two atoms to their bodies, person(X) and
person(Y ), to represent the types of the variables.

person(ann). person(bob).
vacc(a). vacc(b). vacc(n)
0.36 :: vacc(X, a); 0.63 :: vacc(X, b); 0.01 :: vacc(X,n) :− person(X).
0.8 :: inf (X) :− vacc(X,n), inf (Y ), contacted(X,Y ), person(X), person(Y ).
0.1 :: inf (X) :− vacc(X, a), inf (Y ), contacted(X,Y ), person(X), person(Y ).
0.2 :: inf (X) :− vacc(X, b), inf (Y ), contacted(X,Y ), person(X), person(Y ).

(4.10)

The Query table is represented in ProbLog by query statements. For every cell
of the table, a new query statement is added. For example, the three query
tables shown in Fig. 4.3 translate to the following ProbLog statements:

query(twoHeads).
query(someHeads).

query(vaccine_of_Person(bob)).
query(person_is_infected(X)).

query(die_value(six)).

(4.11)

If no Query table is present in a pDMN model, it is assumed that the probabilities
of all symbols of the model should be queried. In such a case, a ProbLog query
rule is generated for every entry in the Predicate and Function glossary tables.
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Type
Name Elements
Person john, mary

Intensity heavy, mild, none

Predicate
Name

burglary
alarm

Person calls
anycalls

Function
Name Type

earthquake Intensity

Burglary
U burglary

Yes
1 0.7

Earthquake
Ch earthquake

heavy mild none
1 0.01 0.19 0.8

Calls
U alarm X calls

Yes
1 Yes 0.8
2 No 0.1

Alarm
U burglary earthquake alarm

Yes
1 Yes heavy 0.9
2 Yes mild 0.85
3 Yes none 0.8
4 No mild 0.1
5 No heavy 0.3

anycalls
U X calls anycalls
1 Yes Yes

Query
X calls
anycalls

Figure 4.4: Full pDMN model for the Earthquake example

4.5 Implementation

To automatically translate pDMN models to ProbLog and execute them, the
translation principles described earlier have been implemented in a solver1. This
solver is largely based on the solver which we created for cDMN, due to the
similar nature of the notations. The input for the solver is a pDMN model in
the form of a .XLSX spreadsheet. Concretely, the solver works in three steps.

First, it interprets all glossary tables in the spreadsheet, beginning with
the Type table. For every entry, the solver creates internal Type objects,
necessary to interpret the arguments used in the Predicate and Function

1https://gitlab.com/EAVISE/cdmn/pdmn

https://gitlab.com/EAVISE/cdmn/pdmn
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tables. The solver then evaluates every decision table one-by-one, using a
lex/yacc parser to parse every cell and transform them into a pDMN expression.
For example, an expression of the form “vaccine of bob” is translated into
“vaccine_of_person(bob)”.

Next, all decision tables, are converted into ProbLog rules in the manner
described earlier. At the same time, the Query table is parsed and converted
into ProbLog query statements.

Lastly, the generated specification is executed using ProbLog’s Python API, after
which the queried probabilities are shown. In this way, the pDMN execution
process consists of a closed pipeline between pDMN modelling and ProbLog
execution.

The pDMN solver is available as a Python package, and can be downloaded
from its PyPI repository2.

4.6 Full example

In the previous sections, every example only consisted of limited snippets of
pDMN models. To give a view of what a complete pDMN model looks like,
this section shows a concrete implementation of the well-known Earthquake
example. In this example, a house alarm can be triggered by a burglary, by an
earthquake of a certain intensity (heavy, mild or none), or by a combination
of the two. Both the burglary and the intensities of the earthquake have a
probability associated with them. If the alarm rings, the neighbours John and
Mary both could either call the home owner, or they could dismiss the alarm
as incorrect and ignore it. We now want to find out the probabilities of either
neighbour calling.

The pDMN model for this example is shown in Fig. 4.4, and consists of the
glossary tables, five decision tables and a query table. In the glossary tables, we
first introduce two types, Person and Intensity, which respectively represent the
neighbours and the earthquake intensities. In the Predicate table, we declare
four predicates: the 0-ary predicates burglary, alarm and anycalls, and the
unary predicate Person calls. To denote the intensity of the earthquake, we
make use of the 0-ary function earthquake, which will thus either be heavy, mild,
or none.

Of the five decision tables, two are straightforwardly used to set the probabilities
of a burglary and the earthquake intensities. As these concepts do not depend

2https://pypi.org/project/pdmn

https://pypi.org/project/pdmn
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on anything, their decision tables contain no input columns. The Alarm table
contains a rule for every possible combination of burglary and earthquake to
represent the probability of the alarm triggering. Note that it does not contain
a rule in which neither a burglary or an earthquake take place, as the alarm
will never trigger in such a situation, thus allowing us to leave out that rule.
The fourth decision table, named Calls, expresses that every person X has a
certain probability to call the home owner, depending on whether the alarm
rings. Finally, the last decision table defines anycalls = Yes whenever any
person X calls.

To find the probability of each neighbour calling separately, and the probability
of either of them calling, the Query table is added to the model in order to
finish it. Translating this model to ProbLog using the pDMN solver results in
the following code:

% facts
intensity(heavy). intensity(mild). intensity(none).
person(john). person(mary).
% Burglary
0.7 :: burglary.
%Earthquake
0.01 :: earthquake(heavy); 0.19 :: earthquake(mild); 0.8 :: earthquake(none).
% Alarm
0.9 :: alarm :− burglary, earthquake(heavy).
0.85 :: alarm :− burglary, earthquake(mild).
0.8 :: alarm :− burglary, earthquake(none).
0.1 :: alarm :− not(burglary), earthquake(mild).
0.3 :: alarm :− not(burglary), earthquake(heavy).
% Calls
0.8 :: person_calls(X) :− alarm, person(X).
0.1 :: person_calls(X) :− not(alarm), person(X).
% anycalls
anycalls :− person_calls(X).
query(person_calls(X)).
query(anycalls).
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We can also use the pDMN solver to run ProbLog directly, thereby “executing”
the example. This results in the following output:

>>> pdmn Examples.xslx −x −n "Earthquake"
{person_calls(mary): 0.501765, person_calls(john): 0.501765,
anycalls: 0.6319415}

4.7 Conclusion

This chapter presents a preliminary version of pDMN, a notation for Probabilistic
Logic Programming based on the DMN standard. While DMN’s deterministic
nature is one of the main advantages of the notation, there are many
application domains in which probabilities appear. To this end, the goal
of pDMN is to extend DMN with probabilistic reasoning, while maintaining
the readable and user-friendly format of the original. It extends DMN with
probabilities, predicates, quantification, and a new hit policy to represent
annotated disjunctions. We have laid out the general translation principles
of converting pDMN into ProbLog code, allowing for the execution of the
pDMN models. These principles have also been implemented in an automatic
conversion tool, which is available for general use.

In future work, we plan on further extending the notation (e.g., with support
for more hit policies), formalizing the complete pDMN semantics, extending
the DRD to support probabilities and making a user-friendly interface for the
system.





Chapter 5

Feature Modelling

Feature Models are straightforward diagrams representing a
product’s configuration. While they are typically used as part
of a Software Product Line (SPL), feature models also have much
potential to be used in a manufacturing context. In particular, they
could help to create design tools which support the engineers in
creating correct designs. The goal of this chapter is to investigate
this link.

This chapter is based on work presented at the 24th International Workshop
on Configuration, September 2022 [127]. The research was performed in
collaboration with Benjamin Callewaert.
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5.1 Introduction

Feature modelling [74] is frequently used in industry to model variability in
a product. The goal of this approach is to create a diagram that contains
all of the product’s features and their underlying relations. In this way, we
create an overview of all possible configurations of the product, assisting in the
development of new designs, which is important in times of mass customizability.
Usage of feature modelling decreases time-to-delivery, costs, product risk and
labour [101].

Feature models are almost exclusively used in Software Product Lines (SPL),
where the goal is to write software that is re-usable across different variations
of products. In this context, feature models are used to keep an overview on
the product, its features, and the software libraries needed to support them.
From a configuration point of view, the following question then arises: “If a
feature model represents all possible configurations of a product, why is it not
also used to build software that helps in configuring designs?”

However, for realistic applications of this kind, feature modelling and related
tools fall short: to create real designs, we also require knowledge from “outside”
the design, such as knowledge on the working environment, which a feature
model cannot elegantly represent. Thus, to optimally apply feature models
to designs in a manufacturing context, they need to be extended to allow us
to represent background knowledge. However, this addition of background
knowledge leads to a rise in the conceptual complexity of the model, making it
harder to ensure its correctness.

In general, the correctness of a feature model is of paramount importance. To
ensure this correctness, two distinct operations can be performed: verification,
which is “building the system right”, and validation, which is “building the
right system” [20]. In other words, verification is checking whether the system
conforms to specifications, free of syntax errors, whereas validation compares
the system against the real world [62].

For large and complex feature models, verification and validation are difficult to
perform without the support of proper tooling. Hence, much research has been
performed on automated reasoning on feature models. Such systems include
tools based on FOL [89], constraint programming [16], logic programming [76]
and description logics [55]. They are capable of performing various automated
verification and validation tasks, such as generating all possible configurations,
verifying if at least one solution is feasible, detecting so-called dead features and
false optional features, etc.

While verification can be performed fully automatically, validation benefits
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from interaction with the domain expert. During such interactive validation,
the domain experts “play around” with the system, to check if their actions
lead to the results that they expect. However, for this process to be effective,
supporting tools are required. Such a tool should (a) be interactive, (b) allow to
explore the configuration space in a flexible way, and (c) should be explainable.
The latter is specifically important in the case of incorrect behaviour, to quickly
identify the error.

In this chapter, we present our interactive feature modelling tool, FM-IDP.
The tool distinguishes itself from the state of the art by (1) extending feature
models with background knowledge and (2) combining this with a user-friendly,
interactive and explainable configuration interface. On the one hand, it allows
modellers to enhance their feature models with background knowledge in FO(·).
With this additional knowledge, feature modelling becomes better suited to
tackle design problems in a manufacturing context, as we will motivate with a
real-life use case. On the other hand, the modeller can interact with the entirety
of the knowledge via an interactive interface, empowering them to quickly and
interactively explore the problem domain. This also makes FM-IDP well-suited
to assist product engineers in creating new designs in a real-life context.

In short, this chapter presents a full-fledged tool to support the design of new
products. The contributions are as follows:

• We extend feature modelling with background knowledge in FO(·)

• We support interaction with the resulting model using the IDP-Z3
reasoning engine paired with a user-friendly and explainable interface

• We motivate our approach by a real-life industrial use-case

The chapter is structured as follows: we begin by introducing feature modelling
and related works in Section 5.2. Next, we elaborate on a running example for
feature modelling with our approach in Section 5.3. We present our FM-IDP
tool in Section 5.4, and perform a brief comparison and evaluation in Section 5.5.
Finally, we conclude in Section 5.6.

5.2 Background & Related Work

Feature modelling aims to provide an overview of a product and its variability.
Introduced in 1990 [74], it has since gained wide popularity in the design of
Software Product Lines. We will briefly go over the concepts and components
of a feature model diagram, using Fig. 5.1 as an example. In this example, we
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Figure 5.1: Example of a feature model

have modelled the design of a Component, which consists of multiple features
as denoted by its child nodes. These nodes can be connected through multiple
types of relationships.

• A mandatory feature is included in every configuration in which its parent
of the feature is included. This is denoted by an edge ending in a filled-in
circle, such as for Body.

• An optional feature may or may not be included if its parent is included.
This is denoted by an edge ending in an empty circle, such as for Spacer.

• Children can be alternative features to each other, meaning that exactly
one of them must be selected, if their parent is included. This is denoted
by a curve between the edges of the child nodes, as shown for Mat1 and
Mat2.

• Children can be in an or relationship, meaning that at least one child
(instead of precisely one, as is the case for alternatives) must be selected.
This relationship is not shown in the example, but is denoted by a filled-in
curve between the edges.

Besides these parent-child relationships, there are also two types of cross-tree
constraints possible. Firstly, a feature x can require a feature y, meaning that
each configuration containing the former must also contain the latter. Secondly,
a feature x and y can exclude each other, such that no legal configuration
may contain both features at the same time. These cross-tree constraints are
typically either drawn on the model itself using an arrow between the two nodes,
or are specified in a separate text.

There have been many extensions to feature modelling proposed throughout the
years. The two most prominent ones are cardinality-based feature modelling [38]
and extended feature modelling [18]. In cardinality-based feature modelling,
features can be annotated with a cardinality [p..q] to denote that there should
be between p and q copies of the child. For example, the mandatory and
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optional relations correspond to [1..1] and [0..1] respectively. In extended
feature modelling, features can be extended with attributes. An attribute is
typically a measurable characteristic of a feature, such as cost, with its own
feature domain.

Since the introduction of feature models, much research has gone into their
verification and validation. For our purposes, verification is “building the system
right” (i.e., there are no structural errors) while validation is “building the
right system” (i.e., there are no knowledge errors). In this work, we focus on
validation and will therefore not discuss verification any further, but refer to
[17, 51, 59, 93] for more information.

In [117], the authors describe a method to automatically validate feature models
based on textual specifications, by checking that the features and relations
in the feature model are described by the text, and vice versa. Another tool
supporting automated validation is DIRECTDEBUG [83], where the model can
be compared against sets of positive and negative tests cases. This approach is
especially useful when correct products have been designed before, serving as
excellent tests.

Besides these automated validations, there exist some tools that support
interactive validation. Botterweck et al. outline the importance of a visual,
interactive tool for configuring and understanding software product lines [23],
and present their own tool for this purpose. In [22], Botterweck et al. elaborate
on an interactive feature configurator. By performing a translation from feature
models to SAT, the configurator can use a SAT solver to automatically derive the
consequences of user input. The tool is also capable of generating explanations
for those consequences which the user does not understand.

Another example of an interactive tool is FeatureIDE [119], a full-fledged
framework for development of Software Product Lines, which contains a
feature configurator with similar functionalities to the one by Botterweck et al.
Additionally, it also allows more expressive propositional cross-tree constraints,
by allowing combinations of all logical connectives through an intuitive constraint
editor.

The need for adding background knowledge to feature modelling has also
been recognized in literature. To address this need, Myllärniemi et al. [99]
present transformations from feature modelling to intermediary languages,
to “enable the product line engineer to operate on domain-specific modelling
constructs.”. This intermediary language can then be translated into an Answer
Set Programming (ASP) specification to perform configuration. In this way,
the engineer can add the background knowledge required for a correct design in
a user-friendly manner.
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The modelling tool Clafer [8] also combines feature models with more complex
knowledge, in a language built on top of first-order logic. As explained
in [7]: “Clafer offers an expressive constraint language that allows [the
modeller] to specify any first-order logic formulas, which reduces the amount
of tacit knowledge”. It is capable of converting the models into input for
multiple solvers, such as Z3 [98], which can then be used to generate valid
configurations. To support interactive configuration, they have introduced the
Clafer Configurator [7], where a given number of possible configurations are
generated at the start, after which the user can explore them through toggling
on or off features.

In this work, we propose an interactive feature model configurator based on IDP-
Z3. In our tool, modellers can complement the feature model with background
knowledge in FO(·). As we will motivate by a real-life use case, an expressive
language to represent background knowledge, e.g., on the environment of a
product, is essential to select feasible configurations. Additionally, our tool
comes with an interactive interface, allowing the users to explore the problem
domain, validate the feature model and select an appropriate configuration. To
facilitate such interactions between the user and the entirety of the knowledge,
our tool supports several functionalities: the consequences of design choices are
clearly visible to the user, the tool can generate feasible configurations and is
able to provide explanations. Although a number of existing systems already
provide interactive capabilities or allow background knowledge, our work is
unique in providing the combination of the two. As we will demonstrate in our
use case, it is precisely this combination that is required for a system to be
suitable as a support tool for product design in a manufacturing context.

5.3 Use Case

In this section we describe the industry use case which we use to support our
claims. It was previously presented in [4], and comes from a company that
wants to support their engineering staff in designing machine components.

The company has specified a few important goals. To begin with, the design
support should be interactive: the engineers want to incrementally explore the
consequences of different design choices. Additionally, explainability is of high
importance, to ensure that the engineers can track why their choices lead to
these consequences. This helps the engineers to understand the model and
to trust the tool. To properly support this interactivity, the tool should be
responsive enough to avoid that the engineers have to wait for a result. Another
important goal for this tool is that the company’s engineers should be able to
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Figure 5.2: Feature model of the Component use case

maintain the model themselves: if new information about the problem domain
is discovered, or they want to modify existing information, they should be able
to update it without help from IT staff. This goal puts the engineers in the
driver’s seat of the tool: they model their own knowledge, which the system
uses to support them in the design process.

We will briefly discuss a simplified version of the problem domain, which
nevertheless retains most of its important characteristics. The design of the
component may consist of three sub-components: a jacket, a spring and an
optional spacer. A jacket can be constructed out of two possible materials,
named “Mat1” and “Mat2” for simplicity. There are multiple options for its
design: either an “H-design”, an “O-design” or a “RACO-design”. Optionally,
the jacket may also have an extended heel and/or a flange. The spring, also
a mandatory sub-component, is either an “H-spring”, a “RACO-spring" or an
“O-spring”. Here, there are 2 types of “H-springs”: they are either standard or
heavy. Additionally, the “O-spring” can also be a double spring. Finally, the
component may also have a spacer. A spacer is either a normal spacer, a ball
spacer or a “T-spacer”. Together with one of the company’s design engineers, we
constructed a feature model representing this knowledge, as shown in Fig. 5.2.

There are a few design constraints applicable on these components, which are
modelled using cross-tree constraints. Firstly, the design of the jacket requires
a corresponding spring design, and vice versa. Next, if an “H-design” is chosen
for the jacket, the component also needs a spacer. Inversely, the “RACO-design”
prohibits the use of a spacer. Lastly, ball spacers and “T-spacers” always require
either an “H-design” or a double “O-spring”.

To design a correct component, it is important to incorporate the influences of
the working environment, such as the working temperatures. We were not able
to directly model these in the feature model. Some examples of such knowledge
are:
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• If back pressure is present in the environment, the component requires a
spacer.

• “Material1” is not heat resistant, and cannot be used above temperatures
of 200◦C.

• If the temperature is below −50◦C, either a heavy “H-spring” or double
“O-spring” is needed to compensate this.

To summarize, the implementation of this use case has the following
requirements:

R1. an expressive notation, capable of modelling the problem

R2. a notation which the engineers can update themselves

R3. support for expressing background knowledge

R4. interactivity between the user and the system

R5. explainability

R6. support for unbounded integer and real numbers

5.4 FM-IDP Tool

The FM-IDP tool combines the simplicity and intuitiveness of feature modelling
with the interactivity of the Interactive Consultant. It aims to support
interactive exploration of configuration space with background knowledge, which
is useful both for an expert to validate feature models and for making concrete,
error-free configurations. The tool’s interface is split into two tabs: one for
knowledge editing, and one for knowledge interaction.

Knowledge editing As there are two sources of knowledge in the FM-IDP
tool (a feature model and its accompanying background knowledge), there are
also two editors. The feature model editor, as visible on the left side of the
screenshot in Fig. 5.3, is a graphical editor for basic feature modelling. Creating
feature models is performed by clicking on the canvas to create a new node,
naming it, clicking its parent node to form a connection and selecting the
connection type. Once all features have been added, the model is converted
into an FO(·) vocabulary and theory. These are visible to the user through a
read-only text editor, present in the bottom-right of the screen. The conversion
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Figure 5.3: Screenshot of the Component use case modelled in the knowledge
editor

to FO(·) relies on the translation as used in [12], in which each node of the
diagram is represented by a proposition. A brief overview of how to transform
different relations is shown in Table 5.1. As an example, the feature model
shown in Fig. 5.1 is translated to the following FO(·) formulae:

Spacer()⇒ Component().

Body()⇔ Component().

Body()⇔ Mat1 () ∨Mat2 ().

Body()⇔ ((Mat1 () ∨Mat2 ()) ∧ ¬(Mat2 () ∧Mat1 ())).

After creating the feature model, background knowledge is modelled in the
background knowledge editor in the top-right corner. This editor allows
expressing two things:

1. In the vocabulary, we can declare additional concepts, such as BackPres-
sure and Temperature.

2. In the theory, we can write additional FO(·) formulae, such as
“BackPressure ⇒ Spacer” and “Mat1 ⇒ Temperature < 200”.

Behind the scenes, the vocabulary and theory blocks are merged with their
counterparts generated from the feature model. In this way, they form one
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Table 5.1: Translation from feature relations to propositional logic

Relation Propositional Representation
c is mandatory for p p⇔ c
c is optional for p p⇐ c
p has alternative c0 . . . cn p⇔∨n

i=0 ci ∧
∧

0≤j≤k≤n ¬(cj ∧ ck)
p has OR c0 . . .cn p⇔ (c0 ∨ . . . ∨ cn)
x requires y x⇒ y
x excludes y x⇒ ¬y

complete KB containing both the knowledge of the feature model, and its
required background knowledge.

The tool also supports exporting/importing knowledge in the form of a custom-
formatted json file, which describes all the nodes in the feature model, their
connection, and the present background knowledge.

Knowledge interaction Interaction with the knowledge is facilitated through
the Interactive Consultant, as shown in the screenshot in Fig. 5.4. This
screenshot demonstrates how for each symbol in the KB a tile is generated
that can be used to assign it a value. E.g., a proposition is displayed with a
green check mark and a red cross, which either assert or negate the proposition
when clicked. In the example, BackPressure has been asserted by a user, as
indicated by the yellow check mark. Based on this, the Interactive Consultant
automatically derived that, among others, Spacer should be true as well, as
indicated by the grey check mark, and that a Raco design is no longer possible for
the jacket, as indicated by the grey cross. If the user does not fully understand
a consequence, they can ask for an explanation by clicking the grey button: i.e.,
the consequence for Raco design is explained by the fact that the user selected
BackPressure, which requires a spacer to be present, which in turn excludes
Raco jacket design.

This process of selecting features in the interface and immediately viewing
the consequences results in a tight feedback loop between the user and the
knowledge. Moreover, the ability to generate explanations ensures explainability
and interactivity. It is for these reasons that the configurator in FM-IDP lends
itself excellently to the interactive exploration of the problem space. As such, it
is a useful tool in the context of expert validation of the feature diagram. For
example, just by opening the tool a user can make several observations:
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Figure 5.4: Screenshot of the Component use case in the FM-IDP configurator

a. whether a legal configuration is possible, if the root’s proposition symbol
does not show a grey cross mark

b. which features are core features that are always present, as the interface
always shows them with a grey tick mark

c. which features are dead features that are never present, as the interface
always shows them with a grey cross

These third features are most likely due to a mistake in the knowledge, which
should be fixed. While tracing back such an error could be difficult in a large
and complex feature model, this is made easy due to the interface’s explanation
feature. Indeed, these explanations can be interpreted as corrective explanations,
which tell the user what things can be changed to achieve a different outcome.

Our motivation for using the IDP-Z3 system in our FM-IDP tool instead of other
off-the-shelf reasoning engines, such as those for ASP or Prolog, is threefold.
Firstly, while some of IDP’s inference tasks are also supported by other systems,
such as model expansion and propagation, the benefit of the IDP-Z3 system is
that it implements all of them together in the same solver. This multi-functional
approach is quite unique, and allows tools such as the Interactive Consultant to
be built. Secondly, the FO(·) language used to express knowledge is easy-to-read,
yet expressive. The background knowledge is not limited to propositional logic;
when extending the knowledge in the KB, modellers can benefit from n-ary
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symbols and FO(·)’s large expressiveness. Lastly, IDP-Z3 and the Interactive
Consultant have both already proven themselves to be effective in the context
of configuration problems [4, 48].

An additional benefit of the FM-IDP tool is that modellers and users get to know
FO(·), IDP-Z3 and the Interactive Consultant. In this sense, it can be used as
an accessible introduction to propositional logic, driven by the intuitive nature
of feature models, which can then be extended to encompass more complex
expressions.

The source code of FM-IDP is available online1. A hosted instance of the tool
is available for testing online2.

5.5 Evaluation and Comparison

In this section we evaluate the FM-IDP tool and make a brief comparison with
the state-of-the-art. We use the requirements listed in Section 5.3 as basis for
evaluation. Table 5.2 shows an overview of this evaluation in a comparison with
the other works discussed in this section.

Requirements R1–R3 are met by our combination of feature modelling and FO(·)
as complementary notation languages, where the former allows to intuitively
model the product and its features, and the latter allows us to straightforwardly
extend it with background knowledge. By then utilizing the IDP-Z3 reasoning
engine, we meet requirement R6 as IDP-Z3 supports reasoning over unbounded
integer and real numbers, and delivers the required computational performance.
Indeed, in the full use case, which consists of 55 variables (of which 27 are
integers/reals), each value assignment takes on average 2 seconds to propagate.
Finally, the Interactive Consultant’s interactivity and explainability ensure
that requirements R4 & R5 are satisfied as well. This demonstrates that our
approach is indeed capable of capturing the variability of real-life machine
components and offering all of the functionality that design engineers expect
from a design support system.

The ASP approach presented in [99] and Clafer [8] both allow adding additional
knowledge to the feature model: the former supports an intermediate language
with concepts familiar to the product line engineer, while the latter extends
feature modelling with a language built on first-order logic. However, neither
system supports interactive configuration using the knowledge. The ASP
solution does not support interactive configuration [96]. In the case of Clafer,

1https://gitlab.com/EAVISE/featuremodel/feature-model-IDP
2https://fm-idp.onrender.com

https://gitlab.com/EAVISE/featuremodel/feature-model-IDP
https://fm-idp.onrender.com
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Table 5.2: Comparison between functionalities of FM-IDP and other tools.
X = full support, o = partial support.

Work R1 R2 R3 R4 R5 R6
ASP-approach [99] X X X
Clafer Conf. [7] X o X o
Botterweck et al. [22] X X X
FeatureIDE [119] X X X
FM-IDP X X X X X X

while the Clafer Configurator [7] aims at supporting interactive exploration of
solutions, it is not sufficiently versatile. Indeed, the tool only allows a user to
explore a number of initially generated configurations. There is also no support
for generating explanations. It does not show the consequences of choices in
general (i.e., beyond those initially generated configurations), and does not
provide explanations for consequences.

Note that generating a fixed number of configurations as Clafer does is
not enough to simulate the kind of propagation offered by FM-IDP. To see
why, consider our use case with two important integer environment variables,
Temperature and Pressure, both of which have a possibly infinite domain. As a
result, many of the configurations generated by Clafer will be essentially the
same, modulo tiny difference in the value of these variables. This makes it hard
for the engineers to see the forest for the trees. Moreover, there is no guarantee
that all values which do make a difference will actually be covered.

The tool by Botterweck et al. [22] supports interactive configuration, in a
similar fashion to FM-IDP. However, it does not support background knowledge,
thereby limiting the use of the tool for real-life configuration. Similarly, while
the configurator of FeatureIDE [119] supports a constraint editor, this editor is
limited to cross-tree constraints without the possibility of adding new symbols
to express constraints on. Furthermore, constraints can only be expressed in
propositional logic, whereas FM-IDP supports full FOL expressions.

One recurring difference between our work and most of the compared state-
of-the-art is that FM-IDP is restricted to basic feature modelling, whereas
the other tools typically support cardinality-based modelling and/or extended
modelling. However, this design choice is motivated by two reasons. Firstly,
as Schobbens et al. [112] point out, original feature models are expressively
complete. Secondly, FM-IDP is meant to showcase, as a prototype, that
our approach of combining feature modelling with IDP and the Interactive
Consultant opens up new possibilities. Basic feature modelling suffices to show
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this synergy. In future work, the modeller will be extended to also support
cardinality-based and extended feature modelling.

5.6 Conclusion

Feature models are an intuitive notation for modelling a product’s features,
components, and the relations between them. But for feature models to be
useful in real-life configuration design problems, the feature model should allow
complex background knowledge and be supported by an interactive interface to
explore the problem domain.This is where the current state-of-the-art falls short.
Although some of the considered systems do have interactive functionalities or
allow to add background knowledge, no system fully supports the combination
of these two aspects.

In this chapter, we presented our own feature modelling tool FM-IDP. It
combines the simplicity and intuitiveness of feature modelling with the
advantages of the IDP-Z3 system and the Interactive Consultant. It allows the
user to interactively explore the design problem and validate the correctness
of the feature model. Furthermore, the feature model can be extended with
background knowledge in FO(·), an easy-to-understand extension of FOL. The
combination of an interactive modeller and the possibility to add expressive
background knowledge makes the FM-IDP tool unique w.r.t. other state-of-the-
art FM tools.

We evaluated our tool against the requirements for a design support system
of a real-life industrial use case and demonstrated that our approach is indeed
capable of capturing the variability of real-life machine components, while
offering all of the functionality that design engineers expect from such a system.



Chapter 6

Context-Aware Verification of
DMN tables

To ensure correctness of DMN models, all decision tables should be
both sound and complete. State-of-the-art verification strategies
focus on decision tables in isolation, without regard for any context.
Yet, this context, while in-model or as background knowledge, can
influence the output of the table. The goal of this chapter is to
look into extending DMN verification capabilities with context.

This chapter is based on work presented at the Hawaii International Conference
on System Sciences (HICSS), January 2021 [126]. The research was performed
in collaboration with Benjamin Callewaert.
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6.1 Introduction

An important aspect of decision tables is that they should be both complete and
sound. A table is complete if it contains an applicable row for every possible set
of input values. The soundness of a table depends on its hit policy: U tables
should not contain overlapping rows of any kind, while A tables allow them
as long as they do not have conflicting outputs. Tables with the F hit policy
are allowed to have overlap, and as such, are always sound. Tables lacking
these correctness properties are considered erroneous. On top of soundness and
completeness, tables should also be without unfireable rules, i.e., rules that can
be omitted without changing the meaning of the table.

Efficient tools have been created to perform automated table verification.
However, as we point out in this chapter, most of these tools are unable
to (sufficiently) reason on the context of the table and the model. Indeed, most
approaches verify each table in isolation, i.e., without any regard to the rest of
the model. We are aware of two approaches that do take context into account,
but they either do not make enough use of context, or are unable to sufficiently
pin-point specific errors, as we will discuss later.

The contributions of this chapter are threefold: (a) demonstrating the
importance of context via concrete use cases, (b) formally defining context-aware
verification, and (c) building a tool capable of verification within context. It
is structured as follows. We first look at the tools that are already available
in Section 6.2. Afterwards in Section 6.3, we give concrete examples in which
context is important. In Section 6.4 we formally explain the correctness criteria,
and extend them to include context. These definitions are then used in our
implementation, as explained in Section 6.5. We briefly compare and evaluate
our tool in Section 6.6, and finally we conclude in Section 6.7.

6.2 Related Work

Smit et al. [115] conducted a study on DMN verification in a real-life context.
In total, they identified eight different verification capabilities for decision tables.
As shown in Table 6.1, five of these capabilities can be considered as specific kinds
of soundness. Indeed, all these errors are caused by the same root cause: two
or more (fully) overlapping rules. While they do differ in the actions required
to fix them, we will nevertheless combine these five capabilities together in this
work, as this already showcases the benefit of our context-aware approach. The
sixth verification capability, “Missing Rules”, corresponds to table completeness.
The two remaining verification capabilities, “Unnecessary fact verification” and
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Table 6.1: Translation between verification capability terminology.

Smit et al. terminology Our terminology
Identical rules

Soundness
Equivalent rules
Subsumed rule
Indeterminism
Overlapping fact value range
Missing Rules Completeness
— Unfireable rule
Unnecessary fact verification —
Specific partial reduction —

“Specific partial reduction”, are not considered as verification by us and are
therefore beyond our scope. There is no counterpart for unfireable rules in the
framework of Smit et al.

Table 6.2 shows an overview of previous works on decision table verification,
and which verification capabilities they support. With the exception of Hasic et
al. [67] and Calvanese et al. [29], all of the proposed algorithms verify a decision
table in isolation from the rest of the model. For example, when verifying the
BMILevel table in Fig. 6.1, the information in the (upstream) BMI table or in
the (downstream) Risk Level table would simply be ignored.

The tool by Hasic et al. [67] is one of the exceptions that does incorporate
some context from the rest of the model in the verification process. Indeed,
when verifying a table, it also checks whether every output value of the directly
upstream table(s) appears as input value in the current table, and checks for
every output value of the current table whether it appears as input value in the
directly downstream table(s). For example, when verifying the Risk Level table,
they check whether every possible output for BMILevel (Underweight, Normal,
Overweight) appears at least once as an input.

In [29], Calvanese et al. outline a conceptual framework for semantic DMN, as
a way to reason on DMN tables together with background knowledge. Together
with this framework, they also extend their verification methods from [27]
to include forms of background knowledge. However, when verifying table
completeness for example, their algorithm can only tell if rules are missing,
but not which rules are missing. Depending on the size of the DMN model
and the amount of background knowledge, this can drastically reduce the
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BMILevel
U BMI BMILevel
1 < 18.5 Underweight
2 [18.5..25] Normal
3 > 25 Overweight

(a) Example of a decision table.

Risk Level Waist

BMI Level

BMI

Sex

Length

Weight

(b) Example of a Decision Requirements
Diagram

Figure 6.1: DMN example

Table 6.2: Verification tools and their capabilities. (X = full support, o =
partial support, * = does not distinguish between types of soundness, † =
boolean result)
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Calvanese et al. (2016) [26] o X
Laurson et al. (2016) [82] o X
Batoulis et al. (2017) [13] o X
Calvanese et al. (2018) [27] o X
Corea et al. (2019) [37] X X
Calvanese et al. (2019) [29] o† X† X† X
Hasic et al. (2020) [67] X X o
Our tool X* X X X

actual usefulness of the verification method. Indeed, if a large table is found
to be incomplete, manually finding all the missing rules is both difficult and
time-consuming.
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6.3 Types of Context

We identify two types of context, each with a different meaning and scope.

1. In-model context: the information contained in the rest of the model, i.e.,
in all tables apart from the one currently being verified.

2. Background knowledge: additional knowledge about the domain that is
not part of the DMN model itself.

This section elaborates on both types, and gives concrete examples of cases
where this context matters.

6.3.1 In-model context

The first type of context is the in-model context, which consists of all decision
tables in the model that are not the target table to be verified. For example,
consider the model in Fig. 6.2: if we want to perform table verification on the
“Risk Level” table, its context would consist of the “BMI” and the “BMILevel”
tables.

When verified in isolation, the “Risk Level” table passes our three tests: it
is sound, complete, and has no unfireable rules. However, when taking the
in-model context into consideration, the table has two rows that are actually
unfireable. Indeed, both the third and the fourth row of the table can never
fire, as the input combination BMILevel = Overweight and Sex = Male is not
possible, according to the “BMILevel” table; this table has no rule for which
the input value of Sex = Male leads to output value Overweight for BMILevel.

This is an example in which the error cannot be detected by considering either
table in isolation: it can only be detected by looking at both tables together.
There are two possible root causes for this error. Either rule 3 and 4 are indeed
redundant and should be removed, or, perhaps more likely, the “BMILevel”
table is missing a rule in which a man can be overweight.

6.3.2 Background knowledge

The second type of context is the background knowledge: information about the
domain that is not explicitly present in the model. Typically, a DMN model
contains only the knowledge needed to make certain decisions in a domain.
However, the domain experts may have a lot more knowledge that, even though
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BMI
U Weight Length BMI
1 — — Weight/(Length*Length)

BMI Level
U BMI Sex BMILevel
1 < 18.5 Female Underweight
2 < 25 Male Underweight
3 [18.5..25] Female Normal
4 (25..30] Male Normal
5 (25..30] Female Overweight
6 > 30 — Obese

Risk Level
U BMILevel Sex Waist Risk Level
1 Normal — — Low
2 Underweight — — High
3 Overweight Male ≤ 102 Increased
4 Overweight Male > 102 High
5 Overweight Female ≤ 88 Increased
6 Overweight Female > 88 High
7 Obese Male ≤ 102 High
8 Obese Male > 102 Very High
9 Obese Female ≤ 88 High

10 Obese Female > 88 Very High

Figure 6.2: Decision tables defining a patient’s BMILevel

it plays no direct role in the decision process, can be useful when verifying the
model.

Consider for instance the decision table shown in Fig. 6.3, derived from a real-life
use case at a company that develops information systems for trains. Based on
information on a train and its station, the table defines a sequence ID that can
then be used to decide what information should be announced in the train.

Concretely, the table has three inputs: the type of the station (major, minor,
airport), the location of the station in the train’s route (origin, intermediate,
terminating) and the status of the train (departing, in between stations,
arriving).

The following background knowledge is obvious to the domain experts:
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Sequence ID
U Station Type Location Status ID
1 — origin departure s1a
2 minor intermediate departure s1b
3 major intermediate departure s1c
4 airport intermediate departure s1d
5 — — in between s2
6 — intermediate arrival s3a
7 minor terminating arrival s3b
8 major terminating arrival s3b
9 airport terminating arrival s3c

Figure 6.3: Decision table defining a sequence ID

Sequence ID: missing rules?
U Station Type Location Status ID
1 — terminating departure ?
2 — origin arrival ?

Figure 6.4: Missing rules (?) of the table in Fig. 6.3

• If the station is the terminating station, the train’s status can never be
“departure”.

• If the station is the station of origin, the train’s status can never be
“arrival”.

Because of this background knowledge, some input combinations are not needed
in the decision table. For instance, there is no rule for Location = origin and
Status = arrival.

If the table is verified without background knowledge, it would seem to be
incomplete, and a verification tool might suggest to add at least two new rules,
shown in the table in Fig. 6.4. However, from a modeller’s point of view, such
rules of course do not make much sense.

6.4 Formal correctness criteria

In this section, we formally define correctness of decision tables, taking into
account context. First, we explain the semantics of single hit decision tables
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and their completeness criterion as described by Calvanese et al. [27]. Following
that, we describe the criterion for unfireable rules, and extend the correctness
criteria with both types of context. We will only consider tables with the U hit
policy in this section for the sake of simplicity, but the semantics are trivial to
extend to the A and F hit policy.

6.4.1 Decision table semantics, completeness and soundness

Calvanese et al. [27] already define a few table correctness criteria, including
table completeness and soundness. We will briefly go over their formalisation,
which we slightly modified to fit our semantics presented in Chapter 2.2.1.

First, recall that each cell of a decision table (i, j) corresponds to a formula
Fij(x) in one free variable x. For example, a cell containing “< 18.5” translates
to the formula “x < 18.5”. To denote if a value x belongs to the domain of a
variable, we also introduce a unary predicate Legali for each input column i.
For example, these predicates would be interpreted as follows for the Risk Level
table in Fig. 6.2:

Legal0 ∈ {Normal, Underweight,Overweight,Obese}.

Legal1 ∈ {Female,Male}.

Legal2 ∈ {0 . . .+∞}.

This prevents us from checking table correctness using nonsensical input values,
such as BMILevel = Red, Sex = 3 and Waist = Yes.

Completeness: a decision table is complete if it contains an applicable rule
for every legal configuration of input values. In other words, it should not be
possible that, for a given input, no rule fires.

∀x⃗ :
(∧

i∈I

Legali(xi)
)
⇒
∨

r∈R

(∧
i∈I

Fir(xi)
)

with x⃗ representing a set of input values, I the number of inputs, R the number
of rows, and xi the i-th input value of x⃗. The above formula can be read as
“For every possible set of legal input values, at least one row must match”.

Soundness: a decision table with the U hit policy is sound whenever the rules
of the table are mutually exclusive. As the soundness of a decision table does
not change when taking context into account, we refer to the work of Calvanese
et al. [27] for the formal criterion.
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6.4.2 Unfireable rules

While Calvanese et al. [27] also specify a criterion for unfireable rules, they only
do so for F tables. Indeed, in F tables certain rules can be masked by others,
and thus prevented from firing. However, it is also possible (though unlikely)
to have unfireable rules in both U and A tables. As such, we propose our own
criterion for such rules: for every row in the decision table, there should be a
legal set of input values that satisfies it.

∧
r∈R

(
∃x⃗ :

∧
i∈I

(
Legali(xi) ∧ Fir(xi)

))

with x⃗ representing a set of input values, I the number of inputs, R the number
of rows, and xi the i− th input value of x⃗.

Note that this criterion will only rarely be violated, namely only if a condition
rules out all possible values for an input variable, such as a condition “< 0” for
a natural number variable.

6.4.3 Correctness criteria with context

Before extending the correctness criteria of completeness and unfireable rules
with context, we elaborate on both types of context. In-model context consists
of all tables that are not the table currently being verified.

Background knowledge, in the form of FO(·) formulae, is contained in the
knowledge base KB. For example, the knowledge base of the Sequence ID
example given in Section 6.3.2 consists of the following two implications:

Location = terminating ⇒ Status ̸= departure.

Location = origin ⇒ Status ̸= arrival.

The “variables” of DMN are represented by constants (e.g., Location and Station)
in the FOL KB and in the FOL semantics SemT of a DMN table. In order to
define our context-sensitive correctness criteria, however, we will need to be able
to quantify over the DMN variables. Therefore, in the correctness criteria, the
DMN variables will need to be represented by FOL variables. Let V⃗ be the set
of all FOL constants that correspond to the DMN variables of the model. We
introduce for each V ∈ V⃗ a unique FOL variable xV and define x⃗ = (xV )V ∈V⃗
and denote by ϕ[x⃗] the result of replacing each constant V in the formula ϕ by
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Sequence ID
U Station ID
1 city 0
2 major 1

(a)

Stop
U ID Stop
1 0 No
2 1 Yes

(b)

Figure 6.5: Example incorrect DMN tables

the variable xV . For example, if ϕ is the formula

Location = terminating ⇒ Status ̸= departure

then ϕ[x⃗] is the formula

x1 = terminating ⇒ x2 ̸= departure

where x1 = xLocation and x2 = xStatus. We now extend the completeness and
unfireable rules criteria with both types of context. We use SemT (V1, . . . , Vm+n)
to represent the table semantics as outlined in Chapter 2.2.1, with Vi representing
the DMN variable in the heading of the ith table column and m/n respectively
representing the number of input and output columns.

Completeness. When verifying the completeness criterion for a table Tj , we
require that the set of variable values x⃗ satisfies all other tables Ti, i ̸= j and
the background knowledge in the KB. The completeness property for table Tj

with input variables W1, . . . ,Wm and rows R is defined as:

∀x⃗ :
∧
i ̸=j

SemTi
[x⃗] ∧KB[x⃗] ∧

∧
k∈1..m

Legali(xWk
)

⇒
∨

r∈R

∧
k∈1..m

Fkr(xWk
).

For example, consider the completeness verification of the table in Fig. 6.5a,
with variables for Station, ID and Stop.

∀p,q, r :
(

(q = 0⇒ r = No) ∧ (q = 1⇒ r = Yes)
)

∧ Legalp(minor) ∧ LegalID(q) ∧ LegalStop(r)

⇒ (p = major ∨ p = city))
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We can conclude that the table is incomplete, as there is no row for
Station = minor or for Station = airport.

Unfireable rules. We extend the unfireable criterion in a similar manner to
the completeness criterion, by adding the KB together with the other tables.
In other words, for every row of table Tj , there should be a set of variable
assignments x⃗ that satisfies all other tables, the KB, and the inputs of the row
itself. ∧

r∈R

(
∃x⃗ :

∧
i̸=j

SemTi
[x⃗] ∧KB[x⃗]

∧
∧

k∈1..m

Legali(xWk
) ∧
∧
i∈I

(
Fir(xi)

))

For example, consider the verification of the first rule of the table in Fig. 6.5b,
using variables for Station and ID.

∃p, q :(p = city ⇒ q = 0) ∧ (p = major ⇒ q = 1)

∧ LegalStation(p) ∧ LegalID(q) ∧ q = 0

Because the city is not a legal value for the variable Station, q can never be 0.
As such, this first rule is unfireable.

6.5 Implementation

To show the practical applicability of this work, we have created a tool capable of
decision table verification with context. Concretely, each of the three verification
capabilities has been implemented using IDP-Z3. As will be shown later on,
this separation between knowledge and its use facilitates the reuse of the same
knowledge for different purposes. To reason on the KB, three of IDP-Z3’s
inference methods are used in this work: propagation, model expansion and
abstract model expansion.

To verify a table j, we convert the DMN model into an FO(·) theory that
consists of KB ∪

⋃
i ̸=j SemTi

(both types of context) and the formula∧
r∈R

Row(r)⇔
∧
i∈I

Fir(Hi)
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to represent table j, with Row a new predicate to represent if a row has fired.
We will now go over every verification capability and explain how IDP-Z3 can
perform them.

Completeness To verify a table’s completeness, we look for a set of assignments
for which no row fires. If the IDP system is then unable to find any solution,
we can conclude that the table is complete. We perform this check by adding a
constraint to the KB stating that no row is allowed to fire.

∀r : ¬Row(r).

We then run IDP-Z3’s model expansion inference to find a structure that satisfies
the adapted KB theory T ′. Because this KB includes the representations of the
other tables and the background knowledge in the form of FO(·) formulae, we
are effectively able to verify completeness w.r.t. both types of context. If no
solution can be found by model expanding, the table is complete.

One weakness of this verification is that, in the case of an incomplete table,
it is not easy to pin-point the exact gaps in its rules. We cannot use model
expansion to generate all value assignments for which no rule is applicable,
because there can be an infinite number of them when reasoning with integers
and floats. However, we overcome this issue by using IDP-Z3’s Abstract Model
Generation (AMG, see Section 1.3.2). Indeed, this inference allows us to find
the gaps in a decision table, with every abstract model representing a different
gap in the rules.

Soundness. To detect overlapping rules, we use IDP-Z3 to find a set of value
assignments that results in multiple rules of a table firing. Similarly to table
completeness, we can do so by adding a new constraint:

#{r : Row(r)} > 1.

This constraint can be read as “The number of rows for which Row is satisfied
should be greater than 1”. If model expansion is then incapable of finding a
solution (i.e., no two rows can fire at the same time), the table is sound. Else,
the solution will contain which specific rows overlap, allowing us to present this
information.

Unfireable rules. IDP-Z3’s propagation inference task is used to detect
unfireable rules. If the propagation derives that an atom of the form Row(i)
must be False, we know that row i cannot fire. If it does not derive any atoms
of this form, the table is free of unfireable rules.
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All of these described table verification algorithms have been implemented
in DMN-IDP. It is available for demonstration online1, and includes all the
examples discussed in this thesis. Internally, the conversion from DMN to FO(·)
is done using the cDMN solver, which has been extended to generate the FO(·)
representation for table verification. The specific version of the IDP system
used in this work is IDP-Z3 [32].

6.6 Comparison and Evaluation

In this section, we give a brief comparison between our tool, the verification
algorithms described by Calvanese et al. [29] and the state-of-the-art verification
tool by Hasic et al. [67]. When compared to the approach by Calvanese et al.,
our work distinguishes itself in two ways. Firstly, our completeness verification
does not only return a boolean output, but is also capable of identifying the
missing rules. Similarly, our overlap detection and unfireable rule detection are
also able to pin-point the specific rules causing the error. Secondly, we have
created a concrete implementation of our verification methods, which has also
been integrated in a DMN tool. In this way, we show that our approach is also
practically feasible.

On the language level, the description logic ALC used by Calvanese et al. can
be seen as a fragment of the FO(·) language, making our approach at least as
expressive in theory. However, because FO(·) is not decidable (unlike ALC), the
IDP system can actually only reason with theories that obey certain restrictions
on the domains over which the variables range. Variables that range over a finite
domain are not a problem, and neither are certain uses of numerical variables
within infinite domains. In particular, the theories that result from translating
DMN variables with an infinite numerical domain can be handled. However,
in general, IDP-Z3 cannot perform all of the Open World reasoning of typical
description logic reasoning engines over infinite domains. The relation between
FO(·), IDP and description logics has been further described in [137].

To compare our implementation to the one by Hasic et al., we used both tools
to verify the DMN models in Fig. 6.2 and Fig. 6.3. In the first model (3 tables,
17 rows, 4 inputs), as mentioned in Section 6.3.1, the Risk Level table contains
two unfireable rules. The tool by Hasic et al. is unable to detect this. Our
tool on the other hand is able to correctly identify the two unfireable rules,
and considers the table error-free after their removal. By contrast, the tool by
Hasic et al. generates a false positive for the fixed table, reporting missing rules
for the cases that cannot occur.

1https://dmn-idp.onrender.com/

https://dmn-idp.onrender.com/
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Table 6.3: Comparison between table verification time in milliseconds.

BMI (Risk Level) Train sequence
Hasic et al. [67] 118 97
Our tool 1245 287

The second example (1 table, 9 rows, 3 inputs), as described in Section 6.3.2,
is considered to be incomplete by the tool of Hasic et al., which states that it
is missing the rules listed in Fig. 6.4. In contrast, our tool is able to use the
background knowledge and conclude that this table is indeed correct.

The increased functionality of our tool comes at a computational cost, however.
As shown in Table 6.3, the verification time of our tool is a magnitude higher
compared to the tool by Hasic et al. when verifying the examples given in this
chapter. These timings were measured as the time it took for the servers to
respond with the verification results. The reasons for the difference in efficiency
are twofold: firstly, by keeping in mind the context of a table, we increase
the verification complexity, as more information has to be verified. Secondly,
we employ a general logic-based solver for our verification instead of highly
optimized procedures.

6.7 Conclusion

Most state-of-the-art verification DMN verification algorithms tend to verify a
table “in isolation”, without regards to the rest of the model or to background
knowledge.

In this chapter, we have first explained the importance of context, extended the
formal correctness criteria, and then proceeded to present a context-aware DMN
verification tool. Instead of verifying isolated tables, this tool always keeps the
other tables in mind. On top of this, the tool allows the addition of background
knowledge in the form of FO(·), thus ensuring a more correct verification.

As we discussed in Section 6.6, our tool offers more functionality than the
context-aware methods of Hasic et al. and Calvanese et al. The verification
tool has also been implemented as part of an existing DMN editor, allowing
anyone to freely test it.



Chapter 7

Adhesive Selector
This chapter presents a use case in collaboration with the Flanders
Make Joining Materials Lab. Selecting the correct adhesive for a
gluing task is an arduous and time-consuming process. The goal of
this chapter is to build a knowledge-based decision support system
which can guide the adhesive experts towards correct adhesives.
Through a thorough user study, we then gauge the opinions of
Flanders Make’s experts on our approach. These opinions are a
valuable source of knowledge for our further development.

This chapter is based on work presented at the 32nd CIRP Design Conference,
March 2022 [72]; the 16th International Conference on Logic Programming and
Non-Monotonic Reasoning, September 2022 [129]; and an extended version has
been submitted to Theory and Practice of Logic Programming. The research
was performed in collaboration with Jeroen Jordens, Maarten Witters and Bart
Van Doninck, our Flanders Make partners.

107
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7.1 Introduction

The Flanders Make Joining & Materials Lab (FM JML) is specialized in
adhesive bonding. They support companies in selecting the most appropriate
adhesive for a specific use case, by accounting for characteristics such as strength,
temperature resistances, adhesive durability, and more. Currently, this is done
manually by one of the adhesive experts that work at the lab. Selecting a
suitable adhesive is a time-consuming and labor intensive task, due to the large
number of adhesives available on the market, each with extensive data sheets.
At the moment, the experts do not use any supporting tools to help them
perform the selection, because the current generation of tools does not meet
their requirements.

This paper describes our work on a logic-based tool which supports the experts
in the selection process. It is structured as follows. We start by describing the
process of selecting an adhesive and the state-of-the-art tools in Section 7.2.
Next, we present our Adhesive Selector Tool in Section 7.3, where we discuss the
process of Knowledge Acquisition, how the system handles unknown parameter
values, and how the experts interface with the knowledge. We share the results
of our preliminary three-fold validation in Section 7.4 and the results of our
comprehensive user study in Section 7.5. Finally, we describe our lessons learned
in Section 7.6 and conclude in Section 7.7.

7.2 Adhesive Selection and Current Tools

As there is no universally applicable adhesive, the selection of an adhesive is
an important process. There are many factors that influence the choice of
an adhesive: structural requirements such as bonding strength and maximum
elongation, environmental factors such as temperature and humidity, economic
factors, and more. Due to the complexity of the problem, there is quite a
potential for tools that support this selection process. Yet, Ewen [54] concludes
that “there is a severe shortage of selection software, which is perplexing
especially when the task of adhesive selection is so important”.

Currently, when tasked with a use case, the experts work in two steps. First,
they try to identify requirements, such as temperature ranges or values for
parameters like minimum strength. Based on this list of requirements, they
perform an initial selection by manually looking through various data sheets
while keeping track of which adhesives are suitable. In the second step, the
inititally chosen adhesives are put to the test by performing real-life experiments
in FM’s lab, to ensure suitability. However, this testing step is costly and time-
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consuming, so it is important that the initial selection is as precise as possible.
While there are tools available for this process, the FM experts do not use them
because they are either too simplistic, or not sufficiently flexible.

The most straightforward selection tools are websites offering simple inter-
faces1 [39]. Based on a series of questions, they provide advice to support
selection. However, they still require the expert to look up and process the
information themselves.

There are also a number of expert systems to be found in the literature [75, 80,
84, 95, 97, 108, 118]. Here, domain knowledge is captured and formalized in the
form of rules, which can be used for adhesive selection by forward chaining and
often also for generating explanations by backward chaining. However, these
systems have a number of downsides: they are low in both interpretability and
maintainability by the expert, often not all required knowledge can be expressed,
and they generally only contain a low number of adhesives or substrates. Finally,
forward and backward chaining are not capable of providing all the functionality
the expert needs. For instance, a situation might arise in which an adhesive is
already pre-defined (e.g., left-over from a previous gluing operation), and the
selection of a second substrate is required. While this selection requires the
same knowledge, the expert tools are not capable of performing this operation.

7.3 Adhesive Selector Tool

This section outlines the creation and usage of the tool, and the main challenges
that were faced in that process.

7.3.1 Knowledge Acquisition

The creation of the knowledge base is an important element in the development
process of knowledge-based tools. It requires performing knowledge acquisition,
which is traditionally the most difficult step, as the knowledge about the
problem domain needs to be extracted from the domain expert to be formalized
by the knowledge engineer. Here, we applied the Joint Interactive Modelling
method (see Chapter 1). As a refresher, the central principle of this method
is to formalize knowledge in a common notation for both domain expert and
knowledge engineer, so that both sides actively participate in the formalization
process.

1such as www.adhesivestoolkit.com and www.adhesives.org

www.adhesivestoolkit.com
www.adhesives.org
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We started by organizing three knowledge articulation workshops, each lasting
between three and four hours. Each of these workshops was held with a
group of domain experts. While typically a single domain expert would suffice
for knowledge extraction, having a group present helps as an initial form of
knowledge validation, as the experts discuss their personal way of working
amongst themselves, before coming to a consensus. For the common notation
we used the cDMN (see Chapter 3).

The first workshop consisted of identifying all relevant adhesive selection
parameters and using them to create an initial DRD, of which a fragment
is shown in Fig. 7.1. It is structured in a bottom-to-top way, similar to how the
experts would reason: they start by calculating the thermal expansions, and
then work their way up to the calculation of the maximum stress.

Thermal Elongation

Adhesive Bond Stress   Thermal Stress 

Max Stress

Thermal Expansion BThermal Expansion A

E modulus of 
adhesive

Adhesive 
Thickness

CTE mat BRelevant LengthCTE mat B

Load

Bonding Area

 

Figure 7.1: Snippet of the created DRD.

During subsequent workshops, the rest of the model was fleshed out. This
consists of decision tables and constraint tables. As an example, Fig. 7.2 shows
one of the decision tables (Fig. 7.2a) and one of the constraint tables (Fig. 7.2b)
that were generated in the workshops.

After these three initial workshops, the cDMN model was converted into an
FO(·) KB using the cDMN solver. Since then, multiple one-on-one workshops
were held between the knowledge engineer and the primary domain expert to
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MinElongation
U Support MinElongation
1 free 0.5 × deltaLength / BondThickness
2 fixed deltaLength / BondThickness

(a) Calculation of MinElongation

BondStrength constraint
E* Strength is Known Max Stress

1 Yes ≥ MinStrength

(b) BondStrength constraint table.

Figure 7.2: Example cDMN tables

further fine-tune the KB. Among others things, this included adding a list of
adhesives, substrates, and their relevant parameter values, and further validating
the knowledge. In total, the current version of the KB contains information on
55 adhesives and 31 substrates. For the adhesives, the KB contains 21 adhesive
parameters, such as temperature resistances, strength and maximum elongation.
Similarly, it contains 11 parameters for the substrates, such as their water
absorption and their solvent resistance. These parameters are a mix of discrete
and continuous: in total, 15 are continuous, and 17 are discrete.

7.3.2 Unknown adhesive parameters

One of the main challenges in the formalization of the KB was handling unknown
adhesive data. Indeed, often an adhesive’s data sheet does not list all of its
properties. This raises the question of how the tool should deal with this:
should the adhesive be excluded, or should it simply ignore the constraints
that mention unknown properties? Together with the experts we agreed on a
third approach, in which we first look at the adhesive’s family. Each adhesive
belongs to one of 18 families, for which often some indicative parameter values
are known. Whenever an adhesive’s parameter is unknown, we use its family’s
value as an approximation. If the family’s value is also unknown, then the
constraint is ignored. This best corresponds to how the experts typically work.

This way of reasoning is formalized in the KB. For example, the constraint that
an adhesive should have a minimum required bonding strength is written as
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follows:

∀p ∈ param : Known(p)⇔(KnownAdh(p) ∨KnownFam(p))

KnownAdh(strength)⇒ BondStrength =StrengthAdh(Adhesive).

¬KnownAdh(strength)⇒ BondStrength =StrengthFam(Family(Adhesive)).

Known(strength)⇒ BondStrength ≥MinBondStrength.
with StrAdh and StrFam representing respectively the specific adhesive’s and its
family’s bonding strength. This approach is used for all 21 adhesive parameters.

One caveat to this approach is that IDP-Z3 currently does not support partial
functions, i.e., all functions must be totally defined. To overcome this, we assign
the value -1000 to unknown parameter values, and define that the value is only
known if it is different from this number. We chose -1000 as there is no adhesive
parameter for which it is a realistic value.

∀p ∈ param : KnownAdh(p)⇔ StrengthAdh(Adhesive) ̸= −1000.

∀p ∈ param : KnownFam(p)⇔ StrengthFam(Adhesive) ̸= −1000.

7.3.3 Interface

A crucial requirement of this application is the ability to interactively explore
the search space. To this end, our tool integrates the Interactive Consultant
to facilitate interaction with the KB. This interface makes use of several
functionalities of the IDP system to make interactive exploration possible:
the propagation inference algorithm is used to show the consequences of each
choice, the explain inference is used to help the user understand why certain
propagations were made, the optimize inference is used to compute the best
adhesive that matches all of the choices made so far.

When using the interface, the user fills in symbol tiles, each representing a
different symbol of the KB, and the system each time computes the consequences.
For example, Fig. 7.3a shows a segment of the interface in which a user set a
maximum application temperature of 38◦C as a requirement. To make it easier
to navigate the symbol tiles, they are all divided in five categories: Performance,
Production, Bond, Substrate A and Substrate B. In the top-right of the interface,
the number of adhesives that remain feasible is shown: e.g., after setting the
temperature constraint, it drops from 55 to 12, as shown in Fig. 7.3b.

The tool is also capable of generating two types of explanations. Firstly, if the
user does not understand why a certain value was propagated, they can click
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(a) Some of the symbol tiles available in the interface, divided into two categories.

(b) List of remaining suitable adhesives
during selection. (c) Example of explanation.

(d) Inconsistency window.

Figure 7.3: Screenshots of the interface.
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on that value to receive a clarification, as demonstrated in Fig. 7.3c. Secondly,
if the user manages to reach an inconsistent state, the tool will try to help
resolving the issue by listing what is causing it. For example, Fig. 7.3d shows an
inconsistency in which a substrate is selected that can not handle the required
operating temperature.

Besides generating a list of all the adhesives that meet certain requirements, the
tool can also find the optimal adhesive according to a specific criterion, such as
lowest price or highest strength.

7.4 Preliminary Validation

Initially, we performed three types of validation for this tool: a benchmark to
measure the efficiency, a survey to measure the opinion of the adhesive experts
and a discussion with the Flanders Make AI project lead.

Benchmark In an initial benchmark, an adhesive expert was tasked with
finding a suitable adhesive for an industrial use case which the company received.
In total, it took the expert about three hours to find such an adhesive, after
delving through multiple data sheets. We then used our tool for the same
use case, and were able to find the exact same adhesive within three minutes.
Interestingly, the reasoning of the tool closely mimicked that of the expert: for
example, they both excluded specific families for the same reasons.

Survey After a demonstration of the tool to four adhesive experts, we asked
them to fill out a short quantitative survey to better gauge their opinion. Their
answers can be summarized as follows.

• The experts find the tool most useful for finding an initial list of adhesives
to start performance testing with.

• The tool will be most useful for newer, less knowledgeable members of the
lab. They can use the tool to learn more about the specifics of adhesive
selection, or to verify if their result is correct.

• However, it is also useful for senior experts as they can discover adhesives
which they have not yet used before.

The main criticism of the tool given by the experts is that more adhesives
should be added, to make the selection more complete.
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Project Lead Discussion As part of a discussion with Flanders Make’s project
lead, who oversees multiple AI-related projects, they outlined their perception
of our tool. They see many advantages. Firstly, as there is not much data
available on the process of adhesive selection (e.g., previous use cases and
the selected adhesives), and data generation is quite expensive, data-based
approaches are not feasible. Therefore, building a tool based on a formalization
of the knowledge they already have is very interesting. Secondly, by “storing”
the expert knowledge formally in a KB they can retain this information, even
when experts leave the company. Thirdly, having a formal representation also
makes the selection process more uniform across different experts, who typically
use different heuristics or rules-of-thumb. Lastly, they indicated that there is
trust in the system, because the knowledge it contains is tangible. This makes
it more likely that the experts will agree with the outcome of the tool.

The project lead also expressed that there is potential to maintain and extend
this tool themselves, which would be a significant advantage compared to their
other AI systems. However, we currently have not yet focused on this aspect.

7.5 User Study

On top of the preliminary validation presented in Section 7.4, we performed
a user study with members of the Flanders Make JML group. This study
distinguishes itself from the preliminary validation in two ways: (1) all experts
actually got to use the tool themselves and (2) it is a qualitative study instead
of quantitative w.r.t. the input of the experts. Our main motivation for this
study is to thoroughly validate the Adhesive Selector, with the following goals
in mind:

1. Gauge the tool’s effectiveness in a real-life setting.

2. Observe how new users interact with the tool.

3. Get feedback on the different aspects of the tool (interactivity, interface,
explanations, ...).

For this validation, we asked the FM JML members to work out two real-life use
cases, after which we performed one-on-one semi-structured interviews (SSI). In
the following subsections we first elaborate on our methodology, then discuss the
results of our interviews followed by describing the limitations of our approach.
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7.5.1 Methodology

In our study, we held interviews with four members of the FM JML, who each
possess knowledge on adhesives but have varying degrees of involvement in
adhesive selection. Two interviewees are adhesive experts that often perform
adhesive selection. The other two do not perform adhesive selection as part of
their job, but are knowledgeable on glues in general. We included such “non-
experts” to explore whether the tool is capable of making adhesive selection more
accessible. We held an online one-on-one session with each of the interviewees.
First the interviewee was asked to perform adhesive selection using the tool,
and then we conducted a semi-structured interview to gather their opinions.

Adhesive selection. Two real-life bonding cases were selected as test cases
for the study: both are cases that the JML lab has received from companies
in the past. In the first one, a plastic door needs to be glued to the body of
an industrial harvester. Originally, the process of finding the correct glue took
weeks, as the requirements are fairly tight. Moreover, the specification contains
an inconsistency in which a higher temperature is required than allowed by the
substrate, which is the same inconsistency as shown in Fig. 7.3d. The second
case details a join between a plastic component and an aluminum body, and is
less challenging.

Both cases were presented to the participants as a short description of the gluing
operation, together with a table containing the actual requirements. For the
first example, the table lists requirements such as “Material A = Virgin ABS”,
“Gap filling of min 1 mm”, “Application between 15◦C to 35◦C”, etc. We have
taken care here to specify requirements in the same terminology as the tool. In
total, the use cases consist of nine and seven requirements respectively.

Before letting the experts work on the cases, we also gave a brief introduction on
how to use the tool. We explained how to enter information, where they could
find the list of possible adhesives and how to see that the tool was performing
calculations.

We observed each tester during the selection process, to gather information on
how they interacted with the tool. To better understand their thought process,
the interviewees were encouraged to talk to themselves about their process as a
way to elicitate their thoughts. We did not intervene while they were working
out these use cases, even when errors were made, and only made suggestions on
what to do if they got stuck or an unexpected bug popped up.
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Interviews. Right after the selection, we held an interview with each
participant. Because our goal is to explore the opinions of the JML members,
we opted for a semi-structured interview set-up, for which we prepared four
main questions to serve as a general guide:

1. Do you see a role for the tool in your job?

2. Do you feel that you understand what the tool does when you use it?

3. What was your experience working with the tool?

4. How would you compare our tool to the ones that you are used to working
with?

In addition to these main questions, we asked additional questions to zoom in
on specific aspects of the answers given by the participants. The interviews
were audio-recorded and transcribed, so that they could be analysed thoroughly.

After transcribing the recordings, we followed the guidelines of Richards and
Hemphill [111] and performed open coding followed by axial coding [36]. Here,
the goal is to identify various codes that pop up during the interviews, and then
further group them into several main categories. These two steps were also
performed separately by an external member of the research group, after which
the results were compared and adapted to mitigate biases (consensus coding).

7.5.2 Results

Based on the interview transcripts, we identified 26 codes in total. Table 7.1
shows an overview of the interview statistics. The last column of this table
shows the Code distribution, calculated as the cumulative percentage of codes
discovered after each interview. This is an important parameter that indicates
whether data saturation is reached, i.e., the point at which the same themes
keep recurring and new interviews would not yield new results. According to
Guest et al. [65], this point is reached when the difference in code distribution
between the current and previous interview is ≤ 5% (i.e., less than 5% of new
information was found). As the information threshold between the third and
fourth interview is 4%, we conclude that we have reached data saturation. A
more detailed table showing the codes per interview is included in Appendix B.

We sub-divided the codes into five main themes: Knowledge, Interactivity,
Expert, Interface and Explainability. These themes, together with their codes,
are visualised in the graph in Fig. 7.4. We will now briefly go over each theme
and highlight the most important findings.
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Table 7.1: Interview statistics

Use Case
Duration (min)

Interview
Duration (min) Words Total

codes
Code

distribution
31 26 2092 15 58%
55 39 2107 16 88%
66 47 3497 19 96%
41 49 3680 13 100%
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Figure 7.4: Graph showing connections between the interview themes and their
codes.
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Knowledge

A major advantage of our tool is that it reasons on the knowledge of the adhesive
experts “like they themselves would”. This is affirmed by the participants, who
particularly liked its level of detail in two ways. Firstly, instead of being limited
to selecting adhesive families, as is the case in most other selector systems, our
tool helps them find specific adhesives. Secondly, the number of parameters
available in the tool is unparalleled, allowing for a more fine-grained search.

“[...] the good thing that I like about this tool is that it’s
quite detailed. It’s really one or multiple steps further,
multiple steps deeper than these other tools. [...] So there
it’s super helpful, definitely.”

Similarly, the tool can also efficiently reason on a broader number of specific
adhesives than an expert. As the latter typically knows some approximate
parameter values by heart for a handful of glues and families, they tend to look
at these adhesives first before widening their search to others when needed.
Here, the Adhesive Selector can help them to find additional adhesives that
they would not have considered without the tool, while also saving them from
having to manually go through their data sheets.

“You might encounter situations in which you find an
adhesive that you hadn’t thought about before. That quite
increases your search scope, I think. It could also help in
mitigating bias.”

“If you want to understand the glue that you want to use
you have to read a lot of data sheets, while having this tool
I think optimized the time in a way that is crazy.”

The main criticism expressed by the participants is that the number of specific
adhesives in the knowledge base is still rather limited. While 55 adhesives is a
good start, adding more adhesives will definitely make the tool more effective.
Similarly, some participants remarked that the knowledge base should contain
more expert knowledge such as the environmental impact and re-usability of
adhesives.
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Interactivity

Throughout the interviews, interactivity was an often recurring topic. For
example, one aspect that the participants all appreciated was that they could
immediately see the effects of entering requirements in the interface.

“Interactively choosing the glue now feels like online shopping
– I can select more options, and see the total number of
adhesives go down until I have entered all requirements.”

Besides making the number of adhesives go down, each time a new requirement
is entered the interface also greys out parameters that have become irrelevant,
and removes parameter values that are no longer possible. This immediate
feedback helps preventing mistakes in the selection.

“I think it’s easier to spot if there are some problems, like
the ones that popped up.”

“It’s safer, you avoid wasting materials and time.”

Moreover, the immediate feedback also allows the experts to “play around” with
the knowledge in the tool. In this way, they can get a feel for the effect of
certain parameter values on the suitable adhesives.

“Us engineers typically want to play with things. They want
to see what happens when they change something, thereby
implicitly performing a sensitivity analysis.”

However, some participants felt that always having to enter the requirements
one-by-one is too inefficient. While they all agreed that the tool is sufficiently
fast, they stated that they would like to “bulk update” choices to be more
efficient in cases where they already know that they are correct.

Expert

As our tool is designed to support JML’s experts based on their own knowledge,
they have played a big role in the creation of the tool and will continue to play
a big role in its further development and use. It is necessary to always have an
expert in the loop: the tool cannot be used by laymen, who lack the specific
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knowledge required to extract requirements from a description of a use case and
who cannot understand the technical jargon.

Besides supporting the experts in making suitable selections, the participants
described two other ways in which the Adhesive Selector can help them. Firstly,
the tool covers sufficient knowledge to also assist in the design of the entire
joint. This is different from adhesive selection in that many “environmental
parameters” are still left open, e.g., substrates might need to be picked, a
decision on joining method needs to be made, etc.

“This tool can already help me to list all these requirements
[required for the dimensioning of the joint] so that I have a
bird’s eye view of the whole design.”

The second additional use of the tool identified by the participants is its potential
to be used as a teaching tool. For instance, newer members of the lab could use
it to gain their footing when starting out.

“You can use it to teach people ‘If you select these
requirements, these are the consequences, which means you
can no longer use these adhesives’.”

“[The tool] can also give some confidence, if they say ‘I would
select this’ and the tool confirms it, you would feel more
certain in your selection”

Interface

Having the participants talk out loud while working the use cases proved to be
a valuable source of information, allowing us to gain insight in how someone
without prior experience interacts with the tool. Some of these insights are fairly
minor, e.g., that we should order the values of the drop down lists alphabetically
and support folding in/out entire categories to make the interface easier to
navigate. Other insights are more major, such as how much difficulty the
participants experienced with the structure of the interface – due to the large
number of parameter tiles (78 in total), it typically took them around 10 seconds
to find the right one. Moreover, the participants often lost overview of which
choices they had already entered in the system, as these are spread all over the
interface.
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One positive note that the experts really liked was the automatically updating
counter showing the remaining number of suitable adhesives:

“I can look at the number of adhesives and see that we are
converging, converging, converging. So it’s fun, to say it
like that.”

This ties in nicely with the idea of the Adhesive Selector as a didactical tool:
if a choice rules out many adhesives at once, the user can assume it is more
“important” than a choice that only removes a handful. Moreover, another
participant suggested using diagrams to annotate symbols with their intended
meaning, e.g., a diagram showing two bonded substrates with arrows pointing
to the “bond line”, the “bonding surface”, etc. This would make the tool more
self-explanatory to people less familiar with these terms, such as the newer
members of the team.

Explainability

While explainability is one of the focuses of our knowledge-based approach, the
experts were not yet fully convinced of this functionality. When prompted with
the “inconsistency” window (Fig. 7.3d), none of the participants knew what to
do. Only two of them quickly understood what the cause of the inconsistency
was, but none were able to resolve it by themselves. As one participant later
remarked in an interview:

“There were multiple sentences below each other, I didn’t
know if it was three remarks or a single one. [...] I was
confused, and could not see the information I needed”

In other words, they had some difficulties navigating the inconsistency window:
partly due to its layout, but also due to the complexity of the knowledge.
However, they did appreciate the potential that this feature holds, for example
to assist in experimenting with the knowledge.

The difficult explanations also did not have an impact on the expert’s trust
in the system. Indeed, it seems that it is more important to know that its
behaviour is derived from the lab’s own knowledge, than to actually 100%
understand the explanations.

“I trust it, because it contains our knowledge. So, well, I do
trust it, but only because I know it’s ours.”
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Other Results A participant with a slightly more business background pointed
out an interesting result that could not be codified under the other themes.
They see the tool as a “uniform way of collecting data relevant to adhesive
selection”, which could help drive the team’s decision making. Examples of
relevant information are the use cases performed by experts, the substrates that
were used, which adhesives are typically picked, what constraints were present,
etc. This data could be useful for:

• finding trainings specifically for the most commonly picked adhesives

• identifying target industries that could also be helped by JML

• deciding which adhesives to keep in stock, and what equipment should be
purchased

This is a unique take that we had not yet considered for our tool.

7.5.3 Limitations of the Study

As with any study, ours is not without its limitations. The main limitation
of this study is our low number of interviewees. However, as pointed out in
Section 7.5.2, we do reach data saturation when looking at the code distribution
of our interviews. Therefore, we feel that the low number of interviewees does
not have a major impact.

Another limitation is that all interviewees are from the same organization and
would therefore have a “common” approach to selecting glues, while external
experts might have a different focus that could result in additional feedback.
However, as the tool has specifically been developed for use within Flanders
Make JML, we believe that this feedback would be less relevant.

During the testing of the tool, we continually observed the interviewees to
study their interaction with the tool. Because of this, the users might have
felt pressured to work in a more “efficient” way, as a form of the Hawthorne
effect [94]. In fact, one participant said so explicitly, when talking about their
experience with the inconsistency window:

“I think that if I were alone, in the lab, I would have taken
more time to read the pop-up. I wanted to be a bit quick.”

Because we were observing, we might have inhibited the users to truly “play
around” with the tool and test it to their heart’s content.
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7.6 Lessons learned

Typically, knowledge acquisition is a time-consuming and difficult process.
We have found that the use of a common notation such as cDMN can help
facilitate this process. The use of a formal representation that the experts can
also understand helps to keep them in the loop and allows them to actively
participate in the formalization process. This way of working is less error-prone,
as it functions as a preliminary validation of the knowledge.

After our three initial workshops, we mainly held one-on-one meetings with one
of the experts to add information on the adhesives, and to further fine-tune
the knowledge. This resulted in a tight feedback loop, which turned out to be
a key element in our formalization. Indeed, thanks to thorough examinations
of the tool by the expert, we were able to discover additional bugs in our KB.
Here, the Interactive Consultant was of paramount importance: each time the
KB was modified, the expert could immediately play around with it using the
generic interface. In this way, the knowledge validation of the tool could happen
immediately after the modifications, allowing for a swifter detection of any
errors.

Having knowledge in a declarative format, independent of how it will be used,
has multiple advantages. To begin with, it allows using the knowledge for
multiple purposes, even when this initially might not seem useful. Furthermore,
it increases the experts’ trust in the system, as it reasons on the same knowledge
as they do, and is interpretable.

The main advantage of using IDP-Z3 does not lie in any one of its inference
algorithms, but rather in the fact that it allows all of the functionalities that
are required for interactive exploration of the search space to be performed by
applying different inference algorithms to a single knowledge-base.

The validation of the tool by the actual end-users proved to be a source of
valuable feedback. Through our observations, we have gained insights on how
the users interact with the tool. By means of semi-structured interviews, we
gathered their opinions, thoughts and suggestions. These two sources of input
combined will help shape further development of our tool.

7.7 Conclusions and Future Work

This chapter presents the Adhesive Selector, a tool to support adhesive selection
using a knowledge-based approach. The Knowledge Base was constructed by
conducting several workshops and one-on-one meetings, using a combination of
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DMN and cDMN. Our current iteration of the tool contains sufficient knowledge
to assist an expert in finding an initial list of adhesives. Compared to the
state-of-the-art, it is declarative, more explainable, and more extensive. The
KB is also not limited to just adhesive selection, but can also be used to perform
other related tasks.

In future work, we plan on converting the entire FO(·) KB into cDMN, and
evaluating its readability and maintainability from the perspective of the domain
experts. Besides this, we intend to test the tool using more real-life use cases,
to quantify the gain in efficiency. Additionally, we are also collaborating with
an external research group to develop an AI-based tool capable of extracting
adhesive information from data sheets, to efficiently add more adhesives to our
KB.





Chapter 8

How do experts choose a
modelling language?

Selecting an appropriate knowledge modelling formalism is
typically one of the first steps an AI expert undertakes when
building a knowledge-based tool. However, they do so mainly based
on intuition and past experiences, and cannot straightforwardly
explain their process. This chapter sets out to elucidate this tacit
knowledge through qualitative interviews, based on which we can
distil the expert’s reasoning processes.

We would like to thank (in alphabetical order) Benjamin Callewaert, Pierre
Carbonnelle, Marjolein Deryck, and Jo Devriendt for their time and
contributions to the interviews of this chapter.
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8.1 Introduction

Throughout the thesis, we have introduced and discussed four formalisms for
representing knowledge: DMN, cDMN, pDMN and Feature Modelling. In an
ideal world, this thesis would now contain a chapter comparing these formalisms,
and would present a complete and comprehensive guide giving advice on what
formalism to use for what types of problems. However, in the real world, this is
unfortunately not possible due to a few reasons.

• As (co-)author of multiple works on these formalisms, we are inherently
biased.

• This chapter would be entirely based on the opinions and experiences of a
single person, which would make the output insufficiently general.

• When comparing implementations in different formalisms, a lot depends
on how the problem is modelled in the first place. In other words, having
multiple implementations is key here.

• A perfect categorisation of formalisms and problems is unattainable due
to the highly complex nature of such an undertaking. Indeed, such a
categorisation would either be too specific and incomprehensible, or too
high-level and incomplete. In either case, it would be unusable1.

Instead, as an alternative, this chapter sets out to distil the experiences and
opinions of multiple modelling experts through qualitative interviews. By giving
them four problems to model in their formalism of choice and interviewing them
afterwards, we can take a closer look at their reasoning: what formalism(s) did
they use, what design choices were made, how user-friendly do they estimate
their solution is, and more. The overall goals of this chapter are therefore as
follows:

• Get a grasp on the instincts of expert modellers w.r.t. formalisms.

• Condense the modelling knowledge of multiple experts.

• Find out what makes a formalism user-friendly.

As IDP-Z3 is the common denominator of all chapters in this work, we have
specifically selected experts that are well-versed in FO(·). In total, four such
experts have been involved in this interview, who combined used FO(·), DMN,

1“Reality is captured in the categorical nets of Language only at the expense of fatal
distortion” – Friedrich Nietzsche
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cDMN, Feature Modelling and Controlled Natural Language (CNL). This latter
formalism has not been introduced yet, and is the focus of the next section.
Next, we introduce the methodology of this research in Section 8.3, and we
discuss the results of the interviews in Section 8.4. We briefly touch on the
limitations of this work in Section 8.5, and finish by concluding in Section 8.6.

8.2 Preliminary: Controlled Natural Language

Kuhn [79] defines CNL as follows: “A controlled natural language is a
constructed language that is based on a certain natural language, being more
restrictive concerning lexicon, syntax, and/or semantics, while preserving most
of its natural properties.” The main idea of CNLs is increase the precision of
a natural language by restricting it in some way. There are two variants of
CNL: “human-oriented” (to streamline communication between human parties)
and “computer-oriented” (to be directly interpretable by computers). For the
purpose of this chapter, we will only consider the latter.

8.2.1 CNL for KRR

In the context of KRR, research in CNL aims to bridge the gap between natural
language and formal language. The idea is that a carefully designed CNL
could combine the benefits of both approaches: excel in user-friendliness and
expressiveness, while at the same time being precisely defined to support
automated reasoning. When designing such a CNL, there are two main
approaches, namely general languages and domain-specific languages.

General languages are designed without an application domain in mind – they
have a very large lexicon to try and be as generic as possible. Examples of
such languages are Attempto Controlled English (ACE) [57] and Processable
English (PENG) [139], both of which can be translated to FOL. The latter also
supports direct translation to ASP [113].

Domain-specific languages, as the name implies, are designed to work in a
specific problem domain. By limiting themselves to a specific domain, they are
typically easier to work with – at the cost of generalizability. An example of
such a language is described in [47], where a CNL was designed to describe
financial assets which could then be reasoned on using IDP-Z3.

While research shows that CNLs certainly improve readability and user-
friendliness, they are not a panacea solving all problems. Indeed, they themselves
have a limitation known as “the writability problem” [78], which is the difficulty
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of writing sentences that conform to the restrictions of the language. In this
way, CNL might sometimes be more difficult to write than formal languages, as
the line between correct and incorrect syntax is more vague – i.e., it is tempting
to write NL sentences that do not conform to the CNL’s grammar.

8.2.2 CNL in IDP-Z3

Since version 0.10.3, IDP-Z3 natively supports CNL-type terms in the theory.
The idea here is that by adding NL-like alternatives for logical connectives and
other constructors, KBs in IDP-Z3 can be more user-friendly. Table 8.1 shows
an overview of all these CNL terms and their FO(·) equivalent. Note that they
are merely synonyms for existing terms (i.e., “syntactic sugar”), and that they
therefore do not modify the structure of formulas themselves.

The listing below shows an example of a simple FO(·) formula and its CNL
counterpart. The variable names have been slightly modified in the second
formula to increase the NL-like “flow” of the sentence.
nr_of_participants() < 3 ∧ Covid_Safe_Ticket() ⇐ activity() = Cinema.

the_nr_of_participants() is less than 3
and the_participants_have_Covid_Safe_Ticket()
    are necessary conditions for activity() is Cinema.

For laypeople without prior experience in logic, the second formula is indeed most
likely easier to read and interpret. However, people with a basic understanding
of logical connectives might prefer the top formula, as it is more concise and less
cluttered. Moreover, the second formula reads quite a bit stilted due to the fact
that the structure of the two formulas remains the same, making the sentence
less natural from an NL point of view. Compare this to an NL description of
the rule: “There must be less than 3 people and all of them must have covid
safe tickets if the activity is cinema.”

It is important to remember however that the CNL developments in IDP-Z3
are still relatively young, and are subject to change. An up-to-date overview of
the syntax is available in the documentation2.

2https://docs.idp-z3.be/en/stable/summary.html

https://docs.idp-z3.be/en/stable/summary.html
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Table 8.1: CNL terms in IDP-Z3

IDP-Z3 CNL FO(·)
for all T x: ∀x ∈ T :
there is a T x: ∃x ∈ T :
p() or q() p() ∨ q()
p() and q() p() ∧ q()
if p(), then q() p()⇒ q()
p() are sufficient conditions for q() p()⇒ q()
p() are necessary conditions for q() p()⇐ q()
p() if q(). p()← q()
p() are necessary and sufficient conditions for q() p()⇔ q()
p() is the same as q() p()⇔ q()
x is y x = y
x is not y x ̸= y
x is strictly less than y x < y
x is less than y x ≤ y
x is greater than y x ≥ y
x is strictly greater than y x > y
the sum of f(x) for each T x such that p(x) sum{{f(x)|x ∈ T : p(x)}}

8.3 Interview Methodology

In this section, we will discuss our approach to the interviews. Our design
choices consist of three key questions:

• Selection: Based on what parameters do we select the interviewees?

• Preparation: What do we give the experts as preparation for the
interviews?

• Questions: What questions will we ask during the interviews?

8.3.1 Experts

The expert modellers for this chapter have been selected according to three
criteria: they should have expert knowledge of FO(·), have at least two years of
experience with KRR, and should have collaborated extensively with domain
experts on a use case in the past. Following these criteria, we were able
to identify four expert modellers, each of which are either current members
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Table 8.2: Modeller confidence, with years of experience and DTAI-KR member
status.
(X = full confidence, o = familiar but not expert)

Modeller FO(·) DMN cDMN FM CNL YoE Member
M1 X o X o 10 Ex
M2 X X 5 Current
M3 X X X o 5 Ex
M4 X o X 3 Current

Table 8.3: Problem descriptions. †Private correspondance.

Problem Source Problem Type
Concrete Selector [73, 129] Decision Support System
Phone Configurator [17] Configuration Problem
Vacation Days [134] Legislation
Planning Problem Kylian Van Dessel† Planning Problem

or ex-members of KULeuven’s DTAI-KR research group. While this means
that all four of them have expert knowledge of IDP-Z3 and FO(·), they are
not necessarily experienced with the other formalisms discussed in this thesis.
Table 8.2 shows an overview of the modellers and how familiar they are with
the various formalisms.

8.3.2 Problem Descriptions

To prepare the experts for the interviews, we have selected four small use cases
for them to model. As these use cases greatly influence the quality of the output
of this chapter, we have paid extra attention to certain requirements when
selecting them. In general, they should meet three requirements:

R1 “Rooted” in real-life: the problems should describe real-life applications.

R2 Diverse: there should be minimal overlap between the types of problems.

R3 New to the experts: they should not have modelled it in the past already.

To meet these requirements, we have decided to derive smaller versions of cases
that have already been published in past literature. In this way, we know
that the problem cases are sufficiently meaningful (R1). Moreover, we have
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selected use cases from four distinct application domains, to ensure diversity
in our problems (R2). While the majority of the problems will be new to
the modellers (R3), one specifically might be well known to them already.
To mitigate any risk we have created our own problem that closely “mirrors”
the original but with different concepts. Table 8.3 shows an overview of the
problems, their source and their application domains. We will now briefly go
over each one and highlight the important aspects.

P1. Concrete Selector is a synthetic problem created to be similar to the
Adhesive Selector use case (Chapter 7). It describes an application in which
engineers must select proper mixes of concrete to meet certain criteria. To do
this, they have a standard library of mixes (≈ adhesive families) to which they
can make small variations (≈ specific adhesives). However, some parameter
values are unknown for some mixes, and this should be handled with care.

P2. Phone Configurator is derived from a feature model presented by
Benavides et al. [17], for which we have manually created a problem description
that matches it. Here, a phone producer wishes to develop a tool capable of
supporting its design staff. In essence, this is a standard configuration problem.

P3. Vacation Days is a classic DMN example, published by Jan Vanthienen
via the DMCommunity website [134]. It describes how to calculate the number
of vacation days for a person depending on their age and years of service. This
problem is very straightforward, but can still be modelled in many different
ways.

P4. Planning Problem is a simplified version of a real-life rostering problem
by Kylian Van Dessel. It is a fairly standard scheduling problem, in which a
first-aid officer and a back-up must be present at all times in a school. Our
simplified version of the problem does not contain any soft constraints.

The modelling experts were given these problems ahead of the interview, and
told to consider them “as if given by a domain expert with the goal of building an
interactive knowledge-based tool”. They were also given carte blanche w.r.t. the
formalism and design focus when representing the problems. The full versions
of the problem descriptions can be found in Appendix C.
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8.3.3 Interviews

After an expert had finished modelling all four problems separately, we held an
interview with them. Similar to the interview described in Section 7.5, we opted
for a semi-structured interview set-up. This approach is ideal for capturing the
expert’s opinions, as we have preselected questions to direct the interview while
maintaining sufficient freedom to ask about specific aspects. To this end, we
prepared four main questions to ask for each model:

Q1. Why have you chosen this formalism, and was this your first choice?

Q2. Try to describe the elements of the use case that led to choosing this
formalism. I.e., what specifically made you pick this formalism?

Q3. Here is a list of a number of different aspects. On which did you focus
the most, and where do you think your model is strongest?

• Readability for you
• Readability for non-expert
• Extensibility
• Efficient execution of certain inference tasks
• Compactness
• Something else?

Q4. How long do you think it would take to teach a domain expert enough
of the notation/formalism, to allow them to maintain the model without
your help?

Similar to the qualitative interview in Section 7.5, we will perform open coding
and axial coding [36] as per the guidelines of Richards and Hemphill [111]. In
other words, we will go through the transcriptions to identify codes, and then
aggregate these codes into overarching categories (also referred to as themes).

8.4 Results

Each of the experts modelled the problems in the formalism they deemed best,
resulting in a total of 16 unique modellings split over five formalisms. Table 8.4
shows an overview of which formalism the experts used for each problem.
While FO(·) is clearly the most represented formalism, DMN/cDMN/Feature
Modelling/CNL have all been used at least once as well. This skew towards
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FO(·) is partially due to the fact that the problem descriptions were merely
“dummy” problems, as will be explained in our Limitations (Section 8.5). The
low usage of “alternative” formalisms does not pose a problem for this work
fortunately, as the point of the modelling exercises was not necessarily to receive
diverse modellings but to stimulate the experts to think about their decision
and design processes. In this way, they were better prepared to explain their
reasoning during the interviews.

These interviews were quite information-packed: each of them resulted in
transcripts of 3000 to 3500 words, as shown in Table 8.5. Through analysis of
these transcripts, we identified a total of 25 codes. Similarly to the qualitative
interview in the previous chapter, we have included the code distribution, as this
is an important indicator to see if data saturation is reached. Unfortunately,
we did not reach the threshold of < 5% new information as there was an 8%
increase, meaning that the discovered codes might not be complete. However,
we feel like this is not a big problem, due to the great quality of the codes we
did get. A more detailed overview of all the codes per interview can be found
in Appendix C.3, together with the code book explaining each code.

To group the codes together, we divided them into five themes: Expressiveness,
Modeller, Naturalness, Tooling and User-friendliness. Fig. 8.1 shows a graph
connecting these themes to their codes. In the upcoming sections, we will now
discuss each of these themes and distil the most important information from
the interviews.

8.4.1 Expressiveness

As introduced in Chapter 1, the expressiveness of a formalism is an important
property: a good formalism should be sufficiently expressive to correctly model
a problem. Therefore, the applicability of a formalism (i.e., which problems it
can and cannot model) is heavily influenced by its expressiveness. In fact, this
property is one of the key aspects the experts appreciate about FO(·).

“[FO(·)] was my first choice, for a few reasons. One is that
it is the most expressive one.”

“I like working in FO(·) because it can reflect many complex
situations, while still remaining relatively readable.”

Because FO(·) can correctly model so many problems, it is a prime candidate
for any application domain. It seems this expressiveness is a double-edged sword
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Table 8.4: The formalisms used by each expert.

Modeller FO(·) DMN cDMN FM CNL
M1 P1-4
M2 P1, P3 P2, P4
M3 P1, P4 P3 P2
M4 P1, P4 P3 P2

Table 8.5: Information on the interviews.

Modeller Interview
Duration (min) Words Total codes Code Distribution

M1 67 3211 11 64%
M2 56 3423 12 88%
M3 40 3026 13 92%
M4 47 3323 15 100%
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however, as the experts do not agree on whether FO(·) is user-friendly. This
will be discussed in more details in the sections to come. However, it certainly
is not well suited for Joint Interactive Modelling, unless the domain expert has
been extensively trained.

“For FO(·) they should know a lot of syntax, which is more
scary than the tabular format [of (c)DMN] in which there
is less expressiveness.”

“If you have a notation which can model everything, you will
have too much expressiveness for many problems, which can
lead to unintuitive models.”

Based on the interviews, it seems like the experts have an implicit notion of
“sufficient expressiveness”. They use this notion to gauge whether or not a
formalism can model a specific problem:

“If the most simple notation contains all expressiveness which
you need, then that will always be the one I choose.”

This approach shifts the issue however: how do you know if a formalism
is sufficiently expressive, based on the problem description? It seems like
this is mostly based on modeller intuition, which they have built up through
their previous experiences. While there are some clear indicators to decide a
formalism’s eligibility (e.g., if it contains constraints, you cannot use DMN), it
in general does not seem feasible to make sound guidelines for what formalism
to pick.

Some experts describe a step-wise approach, where they first started in
formalism x but then shifted to formalism y after hitting an expressiveness
limitation. To this end, it is useful to know which notations subsume each other.
Take DMN for example: if you unexpectedly need to model a constraint, you
can painlessly shift over to cDMN. If you then discover that cDMN also does
not cut it, you can have it converted into FO(·) and continue from there.

8.4.2 Modeller

In many cases, selecting a formalism is not an exact science but rather comes
down to intuition. This intuition is modeller-specific: different modellers might
choose different formalisms for the same problem for different reasons. The only
way to gain this intuition is to train it, for instance by implementing various



138 HOW DO EXPERTS CHOOSE A MODELLING LANGUAGE?

use cases or solving modelling challenges. This also means that familiarity with
a language plays a big role: a modeller cannot use formalisms which they are
not familiar with. While this might seem like pointing out the obvious, it is still
worth mentioning explicitly. For instance, when asked why a modeller chose
FO(·), they replied

“Pragmatism, it is the paradigm I am most familiar with”

The more you train with a formalism, the easier your modelling process will
be. In this regard, three out of four experts responded that “ease of use” is
very important to them, and modelling should be easy and straightforward.
They lean towards the KISS design principle: Keep It Simple, Stupid. When
developing a knowledge base for a domain expert, they are for instance not
worried about the computational performance – thanks to the KBP, this is
off-loaded to IDP-Z33. They are also not too worried about extensibility initially,
but rather follow the Agile approach of “dealing with it when it comes up”.
They all agree that modelling should be as uncomplicated as possible.

“I want to make something that is easy to make.”

As the Joint Interactive Modelling approach also adds domain experts in the
mix, this “ease of use” becomes even more important.

8.4.3 Naturalness

“Naturalness” was a frequently-mentioned topic in all four of the interviews. The
concept came up in two ways: the naturalness of the problem representation,
and the naturalness of the formalism.

The first type of naturalness is about “straightforwardly translating the problem
description to the KB”, in the most “pure” way possible. Here, the experts
want the KB to mirror the original problem description as closely as they can,
so that the original knowledge is reflected clearly.

“I’m trying to translate the sentences as closely as possible
in formal language, so that the informal reading of the
sentences matches the language.”

3Or alternative FO(·) reasoning engines, such as FOLASP [121] and ManyWorlds [49]
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“The point is really to try to make the KB as close to the
NL description as possible.”

“What I usually pay attention to is a close alignment to the
description. If you get a text describing a problem domain,
stick to it.”

This, in a sense, makes the KB more natural, and thus easier to interpret and
work with. Moreover, it also results in a better maintainability and extensibility
of the KB, as the changes to the NL description of the problem can be directly
applied to the KB as well. It also loops back to the principle of KISS: if you can
represent the knowledge without having to add auxiliary variables or complex
statements, creating a KB will be effortless.

The second type of naturalness concerns that of the formalisms itself, i.e., how
naturally a formalism lends itself to a specific type of problem.

“Choose the formalism that is closest to the intention of the
problem description.”

“If your formalism has been specifically designed to model
the type of knowledge you want to model, of course it’s
going to be easy.”

Formalisms with a pre-defined scope, such as DMN and feature modelling, have
been specifically designed with a problem domain in mind (respectively business
processes and configuration problems). Therefore, it makes sense that these are
a great choice for those specific types of problems. In contrast, by not limiting
themselves to specific problem domains, FO(·) and cDMN are more general
in nature. There is a clear link with expressiveness here: a language with a
limited scope will be more natural for a specific type of problem at the cost
of expressiveness. Interestingly, this is the same trade-off as was described for
domain-specific versus general CNL.

8.4.4 Tooling

The fourth theme discovered in this research is Tooling. Throughout the
interviews, the importance of proper tooling became evident. For instance, the
experts really appreciate the Interactive Consultant, because it allows them to
efficiently validate their KB:



140 HOW DO EXPERTS CHOOSE A MODELLING LANGUAGE?

“What I really like about the IC is that it is very easy to
check if you are on the right path”

“For the concrete selector I first used an equivalence instead
of an implication. Then I tried three or four problems in the
IC and immediately noticed that something was wrong. In
that sense, the environments of the editor and the tooling
is extremely useful.”

These testimonies further reinforce the motivation of the Joint Interactive
Modelling approach to validate the KB by frequently building prototypes, for
instance by use of the IC.

Next to validation, the experts also appreciate tools for verification, such as our
DMN verification (Chapter 6). Another tool for verification is FOLint [138], a
linter for FO(·), developed by a master student under our supervision. This
tool statically analyses FO(·) to warn about three types of errors (syntax errors,
type errors & common mistakes), and gives suggestions on the style of the KB.
Since IDP-Z3 v0.10.0, FOLint has also been integrated into the editor of the IC.

“I noticed that, when I was modelling IDP-Z3, interesting
suggestions [by the linter] were showing up.”

While these types of tools are already useful on their own, they become even
more effective when combined with others. Therefore, it is important to have
such software integrated in an accessible editor. In this way, verification and
validation techniques are readily available, and can effortlessly complement each
other.

A good editor can also leverage the structure of a formalism to simplify modelling.
For instance, both DMN-IDP (Chapter 2.3) and FM-IDP (Chapter 5.4)
automatically take care of the formatting, so that the modeller can focus
on the logic rather than its form.

“A structured editor [such as in DMN-IDP and FM-IDP]
guides you in modelling, which makes the process more
pleasant.”

In short, tooling makes the life of the modeller easier by streamlining the
modelling process. In fact, proper tooling is one of the most crucial factors
when selecting a notation:
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“Tooling is probably the deciding factor. It’s less about
“what syntax does your language have, how readable is it”
or “how efficient is your engine”. In the end, there will be
other ways to solve your problems, and if those have better
tooling, you will want to use them instead.”

8.4.5 User-friendliness

The fifth and final theme from the interviews is, unsurprisingly, user-friendliness.
This is a deceptively tricky concept, as it is difficult to state exactly what
constitutes it. Though the dictionary entry for the word is quite straightforward4,
it is not obvious to see how this applies to modelling formalisms. When
asked about user-friendliness, the experts typically respond with terms such as
“Readability”, “Easy to write”, “Intuitive”, and others. There does not seem to
be clear consensus, however.

Take FO(·) as an example: the experts do not agree on whether or not it is
user-friendly.

“I think that if someone can learn Excel, they should be able
to learn [FO(·)].”

“FO(·) is front-loaded, you have to learn and describe
everything before you can get started. There’s many good
ideas in it, but sometimes they do not shine because people
are required to do a lot of work before they can start.”

Through the interviews, we got some very mixed opinions on this topic. This
again confirms that FO(·) is ill-suited for Joint Interactive Modelling, as ideally
we would use a formalism that is easy to learn for laypeople. However, there is
also the notion that the background of the domain expert heavily influences
how quickly they can learn a formalism. It is for instance expected that a
programmer, who likely has extensive experience with computational thinking,
can pick up FO(·) faster than, e.g., a notary.

One thing the experts do seem to agree on is that formalisms that are visual in
nature are more user-friendly for non-experts.

4“The fact or quality of being simple for people to use” – Cambridge Dictionary [2]
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“I found it easy to display it visually; the fact that the base
knowledge was then converted for me, so I only had to add
two constraints.”

“If you can easily visualise something in a structured manner,
I think it will be user-friendly.”

Moreover, it is also a big plus when “common structures” are used to represent
knowledge. Think for instance of the way (c)DMN uses tables and feature
modelling uses the tree structure. Most people will be able to recognize these
structures from other domains, and will therefore already have developed a
basic intuition on how to interpret them.

“The tree-like structure is very recognizable and intuitive to
understand. [(c)DMN] tables also have such a recognizable
structure.”

“Basically, DMN and cDMN are just Excel.”

“If you follow the structure, and you understand it, it should
be easy to learn”

Such visual notations come at a cost however, as they might become too unwieldy
to use when modelling large or complex problem domains. Indeed, it can be
difficult to get a clear overview of all the knowledge when there are, e.g., many
tables or tree-nodes present.

8.5 Limitations

This research is not without its limitations. Firstly, all interviewees work/have
worked in the same DTAI-KR research group of KU Leuven. This is unavoidable
however, given our selection requirements for experts.

Secondly, the interviewees are not familiar with all five of the presupposed
formalisms, but rather only with a few of them. Still, each of the interviewees
has full confidence with at least two formalisms. Moreover, as pointed out
earlier, the point of the dummy problems was not to get “diverse” modellings
w.r.t. the formalism used, but to prepare the experts to efficiently explain their
reasoning when modelling.
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Lastly, the dummy cases might have been too small to really be representative
of real-life problems. While this is not necessarily an issue, two out of four
experts have said that this lead them to select a different formalism.

“I found the problem so trivial that it was easier to write it
in FO(·) than to use cDMN.”

However, both experts took the time to elaborate on which design choices they
would have made for a real-life version of the problems, which proved an equally
valuable source of information for the interviews.

8.6 Conclusion

In this chapter, we have elicited the important aspects of the modelling process,
based on interviews with experts. This information can guide further research
on existing formalisms, the design of new formalism, modelling techniques, and
more. We have categorised this information in five main themes: Expressiveness,
Modeller, Naturalness, Tooling, and User-friendliness.

The Expressiveness of a formalism is of high importance, as it indicates which
problem domains it’s capable of modelling. There exists however a trade-off with
user-friendliness, where a very expressive formalism might become more difficult
to use. To counter this, experts have the notion of “sufficient expressiveness”:
based on trained intuition, they select the most user-friendly formalism that is
still sufficiently expressive for the problem.

In this sense, the modelling process is very dependant on the Modeller. For one,
they need to train to be confident enough in their knowledge of the formalism(s).
Moreover, a modelling expert also needs to make certain design choices. Through
the interviews, we have for instance learned that the experts take a KISS
approach, where they do not worry about computational performance or
extensibility but rather consider these as extras.

One of the main design focusses of the experts is Naturalness. Here, they wish
to translate the problem description in the KB as “purely” as possible, so that
the KB closely mirrors the original description. Their main motivation is that
this results in a more interpretable, maintainable and extendable KB. We also
discussed a formalism-specific naturalness, where a formalism with a pre-defined
scope (e.g., DMN and Feature Modelling) will be well-suited for their targeted
problem types.
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The experts also greatly emphasized the importance of Tooling. Indeed,
verification and validation of the KB play a crucial role in its conception.
When integrated in a good editor, tools such as the IC, our DMN verification
(Chapter 6) and FOLint [138] allow the experts to frequently check whether
their KB is valid and correct. Additionally, such an editor can also leverage the
structure of a formalism to simplify modelling, by for example taking care of
the structure of decision tables or feature graphs.

The final theme is User-friendliness. While on the surface this seems like a
straightforward concept, the experts were unable to precisely specify what
makes a formalism user-friendly. For instance, they do not agree on whether
or not FO(·) is user-friendly. Two properties stick out as being user-friendly
however: formalisms that are visual in nature, and formalisms that leverage
“common structures” to represent knowledge. For instance, Feature Modelling
is very visual and uses a graph-like structure which most people can intuitively
interpret correctly.

In future work, we would like to use this chapter as a springboard to more
qualitative research on the topic of user-friendliness of formalisms. For instance,
while this chapter considers the viewpoint of modelling experts, the viewpoint
of non-AI experts w.r.t. modelling would also provide a valuable source of
information. This type of research however leans more closely to the field
of cognitive sciences, and could benefit from a collaboration with cognitive
psychology researchers.



Chapter 9

FOLL-E: Teaching First Order
Logic to Children

There is a rising awareness that we should teach computational
thinking and other computer science aspects to children, e.g.,
through block-based programming environments. Yet, tools
and support for teaching logic, a cornerstone of fields such as
mathematics, computer science and philosophy, curiously remain
absent. The goal of this chapter is to find possible explanations for
this discrepancy, and to design an application that overcomes it.

This chapter is based on work presented at the Thirteenth AAAI Symposium on
Educational Advances in Artificial Intelligence, January 2023 [132]. We thank
Kaat De Bock (https://www.kaatdebock.be) for their robot illustrations,
Davy of Makerspace De Nayer for assisting us with lasercutting, Walter Schaeken
for his help with preparing the questionnaire, and Maarten Vandersteegen and
Kristof Van Beeck for their technical suggestions.
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9.1 Introduction

First-order logic (FOL) is an important foundation of mathematics, philosophy
and computer science. Zooming in on computer science, many curricula offer
students an introductory logic course, which helps students to, e.g., reason
about the correctness of programs, prove properties such as termination of an
algorithm, analyse requirements, etc. Also in the domain of AI, the importance
of logic can hardly be exaggerated. Indeed, many of the first AI systems were
based on FOL, and to this day there is a vibrant community that uses logic for
AI, in fields such as Knowledge Representation, Logic Programming, Theorem
Proving and SAT solving.

Many key insights from computer science and computational thinking have
been successfully taught to children of various ages [15]. Probably the most
spectacular example are block-based programming environments, such as Scratch
(Junior) [110, 87] and Blockly [56], which are used around the world to introduce
even very young children to key concepts of algorithmic thinking. Learning
computational thinking at an early age may help children in making more
informed decisions about their future field of study, and may provide them with
useful skills, either for a career in CS or some other domain.

While Scratch is a very successful example, there exist also numerous other
efforts to make important ideas from computer science accessible to children.
For instance, in the field of AI, research has been done into helping children
understand concept of neural networks and deep learning [107, 81]. One topic
which appears to be curiously understudied, however, is the teaching of FOL
to children. On the face of it, logic would seem to be a prime candidate: it is
not only important in computer science and AI, but it can also help children
in a variety of other disciplines. Moreover, it nicely complements the Scratch-
like tools: these tools teach children to think about how algorithms work and
how computers perform tasks, while logic could help children to think about
requirements and about properties of problem domains. In other words, Scratch
can teach children the “how”, while logic could help them to figure out the
“what”.

The main research question of this chapter is therefore:

Is it possible to use a “Scratch-like approach” to teach first-order
logic to children?

At first sight, there seems to be a number of obvious objections, such as:
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• Logic has a steep learning curve. Maybe its syntax and semantics are too
complex for children to understand.

• Logic does not “do” anything. When children learn to program, especially
in a graphical environment, they can immediately observe what a program
does, thereby getting valuable direct feedback. Such feedback may be
impossible to obtain when learning logic.

• Logic is not fun. Animations, sounds and graphics can all help to get
children engaged in learning how to program. By contrast, logic may be
too boring to learn.

In this chapter, we will investigate whether these objections can be overcome
by designing an appropriate learning environment. First, we will clarify the
concrete goals of this environment. Then, we describe our approach to achieving
these goals, both conceptually and technically. Afterwards, we present FOLL-E
(First-Order Logic Learning Environment), a concrete implementation of a
blocks-based tool for teaching FOL to children. We also discuss our experiences
and observations of using FOLL-E at two events centred around introducing CS
to children. Finally, we finish by concluding, and lay out potential future work.

9.2 Concrete Goals

When designing the tool, we will attempt to achieve a number of concrete goals.
The tool will have children write logic formulas in order to perform certain
tasks, with the goal of teaching them certain skills. Some of our goals have
to do with the format in which the logic is written, while others have to do
with the task that is to be performed, and still others with the skills that the
children should learn.

9.2.1 Skills

So far, we have been talking about “teaching children first-order logic”. Since
FOL can be used in different ways and for different purposes, we should start by
specifying what it is precisely that we want children to learn. In this work, our
goal is to make children understand which piece of knowledge is expressed by a
FOL formula, and conversely, to be able to formalise a given piece of knowledge
by means of a FOL formula. In other words, we want children to understand
that a formula such as

∀x : Human(x)⇒Mortal(x) (9.1)
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means that “all humans are mortal”, and we want them to be able to come up
with this formula as a representation of this knowledge.

Our tool will therefore have a model-theoretic rather that proof-theoretic view
on FOL: we will focus on teaching the relation between a formula and its models,
rather than on constructing proofs or deducing formulas. We make this choice
because we view this as the more foundational skill: if the children do not
understand what a formula means or how they can correctly formalise a certain
statement, then deduction will not be of much use to them anyway, because
they will not understand what it is that they have deduced.

9.2.2 Representation of FOL

The traditional way of writing logic in mathematics—that is, the use of formulas
such as (1)—is not well-suited for our purposes. Our goal is therefore to design
a way of writing FOL formulas that is more suited for getting children to
understand the essence of FOL, while avoiding needless struggles with syntax.
In particular, we have the following goals for our notation.

• Avoid discouraging the children with finicky syntax. The traditional
notation requires learning several new symbols, and how to combine
them correctly. Forgetting the meaning of a symbol or hitting syntax
errors may discourage children, so we want to avoid this as much as
possible.

• Make the structure of formulas clear. To know what a formula means,
it is necessary to understand its structure. In traditional notation, this
requires knowing the rules of operator precedence, which introduces an
additional layer of complexity.

• Encourage experimentation. Building different formulas and figuring out
their meaning is an excellent way of learning. We want a notation that
encourages children to try things out.

• Encourage collaboration. Talking about formulas is also an excellent way
of learning: trying to explain the meaning of a formula to someone else is
typically a great way of increasing not only the other person’s but also
your own understanding.
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9.2.3 Task to Solve

Our tool will ask children to construct formulas in order to solve certain tasks.
In designing the tasks to be solved, we have the following goals.

• The task should be focused on the |=-relation between formulas and their
models. In other words, the tool should actually be teaching the skills
that we want to teach.

• The task should allow clear and immediate feedback. A tight feedback
loop is crucial for the learning process, so if the user makes a mistake, we
should be able to tell them as quickly as possible what they actually did
wrong.

• The task should allow a gradual increase in difficulty. To create a succesful
learning trajectory, we should be able to start from very simple exercises
and gradually build up to more complex ones.

• The tasks should be engaging and fun. A fun task should help to keep
children motivated throughout the learning process.

9.3 Conceptual Approach

To achieve the goals identified in the previous section, we opt for the following
approach. The task that we ask the user to perform is to construct a formula
that distinguishes a given set of “good” examples from a given set of “bad”
examples. For instance, we could present the user with a red square, a blue
square and a green square as good examples and a red circle, a blue circle and
a green circle as bad examples, and the solution could then be the formula
Shape = Square. Here, the vocabulary in which the formula is to be written
(e.g., the symbols Shape and Square), is part of the assignment. Such a task
has the following benefits:

• It is focused on the model-theoretic semantics of formulas, corresponding
to our goals.

• It avoids the use of natural language: if we were to ask the user to formalise
a given natural language statement (“the shape is square”), the user would
first have to correctly understand the statement, which may introduce
problems that are related to reading comprehension.
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• It introduces a puzzle element. By asking the user to figure out by
themselves what the piece of knowledge is that has to be formalised, they
are presented with an additional challenge, which they hopefully perceive
as fun. Moreover, the puzzle element is not simply “tacked on”, but it
focuses on the difference between the models and non-models of a formula,
which goes to the essence of what the user should learn.

• It allows gradually increasing difficulty. This general framework has
enough flexibility to allow a wide range of difficulty.

• We can present the different examples as pictures to the user. By choosing
a topic that is more whimsical than just coloured shapes, we can introduce
a visually appealing and fun setting.

• The setting allows for an intuitive way of providing feedback to the user:
for an incorrect solution, we can highlight precisely those examples that
are misclassified (i.e., those that should be models of the formula but are
not, and those that should not be models of the formula but are). This
tells the user what they did wrong and may immediately point them in
the right direction for fixing their solution.

The notation that we use for FOL-formulas is a visual, block-based notation.
The success of Scratch-like tools suggests that this is a good approach, which
achieves the goal of being syntax free and engages the users’ visual intuitions.
By carefully designing the blocks, we ensure that it is impossible for the user to
create syntax or typing errors. To visualise the structure of the formulas, we
lay-out the blocks in the style of a parse-tree, placing subformulas below the
formulas in which they appear. Finally, the blocks can be shaped like pieces of
a puzzle, which encourages users to try to fit different pieces together, thereby
encouraging experimentation.

The last design choice that we make is to allow the user to build formulas
with actual wooden blocks, rather than by just using a GUI on a computer.
By providing the user with a tactile, hands-on experience, we hope to
further encourage both experimentation and collaboration in a playful way.
Manipulating the building blocks together with classmates seems more easy
and natural when they are real-world objects, instead of pictures on a computer
screen.

9.4 Concrete Implementation

This section introduces FOLL-E (First-Order Logic Learning Environment),
the concrete implementation of our proposed approach. For this tool, we want
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Figure 9.1: Example robot designs.

a specific problem domain which is (a) enticing and captivating for children
and (b) simple enough for them to experiment with. While this is a fine line to
tread, it may have a substantial effect on the attractiveness of the tool, and the
children’s engagement with it.

For the application domain, we have chosen the design of simple robots, as
shown in Fig. 9.1. The robots have been hand-drawn in a cartoonish style with
vibrant colours to create an inviting visual. A robot consists of six body parts
in total, called components, which can be individually coloured in one of three
colours. Specifically, a robot consists of two arms, two legs, a head and a body,
which can each be coloured either red, blue or green. Additionally, a robot may
also wear a hard hat.

To express constraints on an application domain, we devised a generic blocks-
based formalism for FOL. It was designed with a pegs-and-slots approach in
mind, in which blocks physically fit together if the connection is syntactically
correct and the formulas are correctly typed. Fig. 9.2 shows an overview of the
specific blocks. Note that our application uses only predicates and functions
with arity ≤ 1, but the notation can of course be extended to higher arities if
needed.

These generic blocks can be instantiated to specific blocks for a chosen vocabulary.
For our tool, we prepared a library of blocks specific to the robot domain. In
total, 16 different expression blocks are available in the tool. An overview of the
specific blocks is shown in Table 9.1, together with the generic block type that
they belong to. We represent all terms of type Component by circles and terms
of type Color by squares. Future applications could use more types mapped to
more such basic shapes. Variables are represented by the shape of their type
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Symbol type Block

Constant c/0

Unary or nullary
Predicate p/1 or p/0

Unary
Function f(·) = ·

∧/∨

⇒

∀x[Type]

Figure 9.2: Overview of all generic blocks
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Block type Specific Block Meaning
Constant Blue, Red, Green, Right Arm,

Left Arm, Right Leg, Left Leg
Proposition Robot wears a helmet
Predicate . . . is an Arm, . . . is a Leg
Function Color of . . . = . . .
Implication If . . . Then . . .
Con-/Disjunction . . . And/Or . . .
Type Component
Variable c
Quantifier For each . . . holds . . .

Table 9.1: Overview of the blocks specific to the robot application, and their
general block type. “. . .” signifies an open slot.

Figure 9.3: Blocks expressing “∀c : Color(c) = red”

with an additional cut-out triangle in their left side. This allows a variable to
be used wherever another term of that type could be used, but restricts the
terms that can be quantified over to variables. Fig. 9.3 shows a simple example.

The blocks are laser cut out of 3mm plywood and engraved with their intended
meaning in text and, when applicable, also with an icon such as an arm or a
helmet. Blocks representing a colour were also painted in that colour. In this
way, the notation is low on text, with much visual stimulation. As an added
bonus, this also leads to better visibility from a distance, making it easier for
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Figure 9.4: The laser-cut blocks included in each FOLL-E box. (Text engraving
in Dutch)

the teachers to assist. Fig. 9.4 shows the end result.

In the application, the children are shown three “good” robots and three “bad”
robots, and must devise a rule that distinguishes between them. By puzzling
together blocks, the children can express sentences of increasing difficulty such
as “The left leg is blue”, “If the robot wears a helmet, it has a green body” and
“Every component that is a limb must be coloured green.”. Similar to Scratch,
the tool is “always live”. A Raspberry Pi mini-computer continually scans the
playing area and, as soon as it detects a complete sentence (i.e., all the slots of
the connected blocks have been filled), it converts this into FOL. The IDP-Z3
reasoning engine then checks whether the “good” robots indeed satisfy the
formula, in which case a green check mark pops up next to them. Similarly,
the “bad robots” are checked for unsatisfiability, in which case a green cross is
shown. Finally, IDP-Z3 performs propagation, i.e., computes those properties
that hold in all models of the formula. These are then shown as a partially
coloured robot, where for example only the left leg is coloured blue. This robot
is displayed in the centre of the screen, to help the children understand which
property they actually expressed.

In this way, FOLL-E gives immediate feedback which results in high interactivity,
allowing the children to quickly explore the effects of specific blocks. Moreover,
the feedback is purely visual in the form of the check/cross marks and the centre
robot, which we feel makes the application more intuitive and enticing. In total,
we hand-crafted ten levels of increasing complexity for the children to play with.
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The complete tool consists of the laser cut blocks, a box with a clear panel on
top and a Raspberry Pi 3 B+ with a Raspicam inside, a computer monitor and a
keyboard. The Pi is able to detect the individual blocks by the fiducial markers
glued to them. Specifically, we use ArUco markers [60]. To detect complete
sentences, we chain blocks together by starting at the start block and recursively
looking for attached blocks. This approach has multiple advantages: it is
invariant to the blocks’ rotation, the designs can be changed easily by replacing
the markers and occlusions are not possible due to the camera placement.

The application is written entirely in Python 3, with the GUI created using the
Pygame [106] library. All source code is available online1. To ensure smooth
communication to and from the IDP-Z3 system, the application makes use of
IDP-Z3Py, an as of yet unreleased Python API which aims at facilitating the
embedding of IDP-Z3 in Python applications. A preliminary version of this
API is contained in the code repository. The total cost of one FOLL-E box,
including the Raspberry Pi and the laser cutting but excluding the monitor and
keyboard, comes down to about €70.

Figure 9.5 shows a few photos of children playing with FOLL-E.

9.5 Results

As a preliminary evaluation, we tested FOLL-E at two separate events aimed
at different age groups. The first event was a “STEM-workshop” organised for
high school students aged 16-18, typically with a technical background. The
students were split into two groups of 15 and 9 students, which both partook
in our workshop on Logics, but at different times of the day. During this four
hour workshop, we aim to make the students aware of human reasoning by
analysing our thinking behaviour when solving simple puzzles such as Sudoku.
By gradually increasing the level of abstraction used to solve the puzzles, the
students implicitly start solving SAT-encodings of the logic puzzles manually.
During the last 30 minutes of the workshop, we briefly introduce the role of
reasoning engines such as IDP-Z3 in solving such problems automatically, after
which the students work through the FOLL-E puzzles in pairs.

The second event, the “Children’s University”, is an annual event for children
between the age of 8 and 13. Both the morning and afternoon consist of a lecture
of two hours and a workshop of 1.5 hours. In total, 28 children (13 morning +
15 afternoon) registered for our workshop “Teach the computer”. During the
workshop, we first spend 30 minutes on an interactive exercise in which we

1https://gitlab.com/Vadevesi/foll-e

https://gitlab.com/Vadevesi/foll-e
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(a) (b)

(c)

(d)

Figure 9.5: Photos taken during the Children’s University workshop showing
children playing with FOLL-E.
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illustrate that computers are by themselves incapable of solving problems, and
should be “taught” instead. Afterwards, they are given a 5 minute introduction
to FOLL-E after which they are free to play through the levels in pairs.

We observed the children throughout both events, and will now summarize our
observations. Firstly, the blocks-based notation successfully eliminates both
syntax errors and type errors. The errors that the children did make fall in one
of two categories: reasoning errors and formalization errors. This first category
contains the errors made when trying to deduce the rule that distinguishes good
from bad robots. The second category of errors happen during formalization,
where children incorrectly translate their own understanding of the rule into
the blocks-based notation.

Regardless of their age, all student pairs typically follow the same approach.
First, they examine the robots and discuss what they think the distinguishing
rule is. Once they agree on a rule, they try to represent it using the blocks. If
their solution is not correct, they try to see if the error is in their formalization
or their reasoning, and correct it accordingly. If they really can not figure it
out, they ask for help.

All students in all groups were able to complete all ten levels, but the time
required varied with age. The 16-18 year olds completed all levels in 20 minutes
or less, whereas the 8-13 year olds generally needed 40-50 minutes. A significant
time difference was also noticeable within the younger groups, where the children
near the upper age limit (13) finished about 15 minutes ahead of the others.

One of the co-authors of this work has extensive experience with teaching
Scratch to children aged 8-13, and reports the following differences:

• The use of physical blocks makes the tool more inviting than Scratch, and
makes collaboration easier.

• Students are more focused. In Scratch, they are easily distracted by all of
its bells and whistles.

Of course, our scope differs from Scratch’s, not just in the skills we teach, but
also in the fact that we fix the vocabulary that is to be used up front, while
Scratch allows children to define their own functions.

In both age groups, children who had previous experience with Scratch initially
had some difficulty adjusting to the declarative paradigm. Instead of the
intended declarative solution such as “robot wears a hat”, they initially tried to
express an imperative statement such as “if the robot wears a hat, then it is
correct”.
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The children reported that in general (a) they enjoyed their time with FOLL-E,
(b) found the puzzle-like nature inviting and (c) liked the assignment. One of
the older Children’s University students said: “Being able to see how it works is
very impressive”, with regards to the visualization of the aruco marker detection.
Another mentioned afterwards that “It’s satisfying to puzzle the pieces together
and see the result, especially if it’s correct.”

Many of the younger children reported some difficulty spikes between the levels.
Among others, the transition to levels using quantification was difficult. A
possible explanation for this is that some children solved the levels that were
meant to initially introduce quantifiers in an untended way, without actually
using quantification, which lead to a difficulty spike later on. The tests also
revealed a few minor bugs. Syntax errors are technically still possible by placing
an incorrect block on top of another block’s slot instead of fitting it inside. In
these situations, the application simply crashes. Also, sentences without models
(such as “left arm is a leg”), crash the application, which should not happen.

To measure the effect of the tool on the logical reasoning of the children, we
surveyed both Children’s University groups (aged 8-13) using a questionnaire
that gauges logical thinking. This questionnaire consists of four questions on
spatial reasoning, and four questions on propositional reasoning. Examples of
these questions are as follows:

“The pen lies to the left of the book, and the book lies to the right of
the pencil. Is the pencil definitely to the left of the pen?” (spatial)

and

“If there is an L on this page, there is also a 7. There is no 7 on this
page. Is there definitely an L? ” (propositional)

The students in the morning session took this test before using the tool, as
control group, and the afternoon students took the test after using the tool.
This resulted in an average score of 5.46/8 for the control group and 4.6/8 for
the intervention group, which therefore performed worse than the control group.
A possible explanation might be that the control group took the test at 11.30h,
while the intervention group took it at 16.15h, at the end of a busy day. In
future work, a test with larger groups in more controlled circumstances will be
done.
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9.6 Related Work

Interest in teaching logic to children has been around for a long time. For
example, already in 1982 did Kowalski [77] report on how they teach logic
programming to children using Prolog, with the aim of learning how to apply
logic to other subjects, and to spark interest in programming. While this work
has the same target audience as ours, its goal is different, since they aim to
teach (logic) programming whereas we are focused on the declarative meaning of
FOL formulas. Most tools for teaching logic are geared towards university-level
students [85, 91, 71]. We briefly discuss some of the tools that could also be
used to teach to K-12.

An overview of early work is provided by [61]. Typically, these tools were
focused on creating proofs and verifying them. The most well known of these
is Hyperproof [11], a descendant of Tarski’s World [10], which implements a
graphical environment to teach FOL syntax and semantics. The user is tasked
with expressing formulae on labelled geographical shapes in a 3D-world. For
instance, if cube A is in front of tetrahedron B, they could write “Cube(A)”,
“Tet(B)” and “FrontOf(A,B)” If all cubes are in front of a tetrahedron, they
could write “∀x : Cube(x) ⇒ ∃y : Tet(y) ∧ FrontOf (x, y)”. A survey by Fung
et al. [58] on students in a logics CS course reported the benefits of Tarski’s
World (and by extension, Hyperproof) as encouraging exploration, removing
difficulty spikes and being able to visualise quantification.

Reeves [109] notes that expressing logic specifically on geometrical shapes is not
sufficiently captivating for students, as there seems to be no connection between
the “subject matter” and CS. Therefore, the author proposes an extension of
Tarski’s World in which students reason over graphical user interfaces instead,
stating that this is more relevant to them and thus more motivational.

Mauco et al. [92] present two tools, FOST and LogicChess, which like Hyperproof
allows students to express FOL statements about objects in a graphical
environment. The tools can check the statements for syntax errors, and evaluate
their truth values. In the paper, the authors also remark that both these tools
are domain-specific with pre-coded relations and functions. They regard this as
a major downside, as “FOLs expressiveness lies in the possibility of working
with arbitrary domains”, and not just the predetermined domains. To overcome
this, the authors propose a framework for didactical FOL tools focusing on
extendability.

Our approach differentiates itself from these previously mentioned works in
multiple ways. Firstly, it has a model-theoretic view on FOL rather than a
proof-theoretic view, which we regard as a more foundational skill for children.
Secondly, we use a novel blocks-based notation for FOL, in which children do



160 FOLL-E: TEACHING FIRST ORDER LOGIC TO CHILDREN

not need to pay attention to FOL’s syntax and can thus focus more on creating
sentences with a correct meaning. They also do not interact with the notation
through a GUI, but instead write formulas with wooden blocks, resulting in a
type of CS Unplugged [15]. For these reasons, we feel that our approach results
in a more captivating experience, in which children remain engaged longer in
their tasks.

9.7 Conclusion and Future Work

First-order logic has always been a cornerstone of computer science and AI. Yet,
it is difficult to teach in general due to its steep learning curve. In this chapter,
we present a novel blocks-based notation for FOL aimed at children, which is
designed to be syntaxless, structured and playful. Using physical blocks further
enforces the playful nature while stimulating experimentation and team work.

Based on these blocks, we created FOLL-E, a First-Order Logic Learning
Environment with a focus on high interactivity, visual feedback, and fun.
Children are asked to express knowledge that distinguishes “good” examples
from “bad” ones. These blocks are then scanned and converted to FOL, after
which a logical reasoning engine verifies the (in)correctness of the examples.
This result is then shown, together with a visualisation of the consequences of
their expression.

We tested the tool with around 50 children aged between 8-13 and 16-18. They
were all enthusiastic, stating that the notation is intuitive and inviting, and
that they overall enjoyed their time.

In future work, we will be teaming up with cognitive psychology researchers to
correctly measure the benefit of the tool. Furthermore, we will be looking at
what changes can be made to make the tool more effective, such as introducing
more levels, experimenting with different applications besides robot design, and
adding automated error explanation.
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Research Valorisation

In this chapter, we will take a closer look at some possible ways the research
of this thesis can be valorised. Research valorisation is defined as follows [122]:
“Valorisation is the process of creating value from knowledge, by making
knowledge suitable and/or available for economic and/or societal use.” In
other words, it is about taking the knowledge acquired through the PhD, and
putting it to use.

This chapter is split up into two sections: we first elaborate on the general
economic benefit in Section 10.1, followed by a description of a more specific
plan in Section 10.2.

10.1 Economic Benefit

Throughout this thesis, we primarily looked at how to make knowledge
formalization more accessible. Using the Joint Interactive Modelling
methodology as a framework, we looked into novel and user-friendly knowledge
formalisms, improved verification techniques, and elucidated how experts select
the most suitable formalism, among other things. In this way, our research
serves as a good basis to make the development of knowledge bases (and their
applications) easier for companies.

As evidenced by our past experiences in use cases (see later), embracing
knowledge-based techniques entails quite a few advantages from a company’s
perspective:

161
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A1 Declarative KBs are highly adaptable. As time goes on, traditional
code bases tend to turn into rigid behemoths that are difficult to update.
Updating a knowledge-based tool is easier, as we typically only need to
modify (a part of) the KB. Moreover, due to its natural format, modifying
the knowledge is usually straightforward.

A2 Knowledge-based tools leverage the knowledge already contained within
an organisation. Data-based AI systems require expensive training to
“learn” how to perform an operation, whereas knowledge-based systems
can use a company’s own knowledge. This is especially meaningful in
data-poor environments, where it might be expensive to generate new
data.

A3 A KB is multi-purpose: as the knowledge is formalized with no specific
task in mind, a single KB can be applied effortlessly to solve multiple
problems within the same domain.

A4 As all the knowledge used to derive specific decisions is explicitly present,
declarative AI systems are more explainable. This is especially important
in fields dealing with sensitive information, where it is important to be
able to sufficiently explain why a value was derived.

A5 The knowledge in the organisation becomes persistent: if an employee
leaves, their knowledge stays within the company by way of the knowledge
base. As an additional benefit, this same KB can be used to train new
members of the team.

A6 Processes will be more consistent: where different employees might
have different approaches to solve a problem (such as rules-of-thumb or
“guestimates”), a KB provides a way to standardize these approaches. Not
only does this ensure that all employees will reach the same outcomes, but
it also aids in aligning knowledge across multiple (geographical) branches
of an organisation.

A7 Processes will also be more efficient and more accurate, requiring less
manpower and overall less time.

To substantiate these statements, we will briefly go over four past use cases and
highlight the advantages that were reported.

In the component designer [4], Aerts et al. describe how they built a knowledge-
based tool to assist design experts within a certain multi-national company.
To formalize the KB, they performed multiple knowledge workshops including
engineers from different locations worldwide, in which they used a mix of DMN
and cDMN. During an evaluation session, the engineers reported that they
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can design components roughly 10% faster and with less trial-and-error (A7)
and that their designs are now consistent (A6) between the different engineers
globally. Moreover, they also appreciated that the tool is multi-purpose (A3):
besides assisting in designing a component, it can also help explain why an
unsuitable component design failed (A4), and it can serve as a way to teach
newer members of the team (A5).

In a use case concerning a piece of Belgian legislation [48], Deryck et al.
successfully built a knowledge-based tool to support notaries in calculating
registration duties. Using DMN as a base formalism, they collaborated with
a notary to formalize the KB based on the relevant law texts (A2). Here too,
the resulting tool is multi-functional (A3). Besides calculating registration
duties, it can also be used to reason in “reverse” by selecting the lowest
possible tax first and then answering the other information. Moreover, it
is also highly explainable (A4), which is an important property for tools in the
legal field. Perhaps most interestingly however, the KB has also proven to be
highly adaptable (A1): when the law surrounding the registration duties was
significantly changed in 2018, updating the KB required only 0.5 person-days.

Together with Intelli-Select, Deryck et al. [45] built a knowledge-based tool
for financial asset management. Through a CNL interface, users can express
rules over financial assets (A2). The resulting KBs can then be used to perform
many operations (A3): check eligibility of profiles, explain why an asset is
(in)eligible (A4), compare against others, generate specific documents, and more.
For one specific operation, they also report an incredible time reduction of
multiple months to mere seconds (A7)! Intelli-Select further developed this tool
into OSCAR, which has now been integrated in the toolkit of one of the global
leading financial institutes [1].

In the Adhesive Selection use case (Chapter 7), we built a tool to support
experts in selecting suitable glues. Here, the KB was formalized during multiple
workshops with the experts (A2) in which we used a mix of DMN and cDMN.
The resulting tool helps them find adhesives faster and with less wasteful
testing (A7). By all reasoning on the same set of adhesives, the selection process
has also become more consistent (A6) across different experts. The tool also
offers a way to challenge an expert’s assumptions, because it can explain why a
selection is incorrect (A4). Lastly, the team lead especially appreciates that the
knowledge of the experts is now captured in the KB (A5), and can be used to
train newer members of the lab.

To summarize: by lowering the threshold for building KR applications, more
organizations are able to take advantage of the aforementioned benefits by
efficiently leveraging the knowledge in their organisation.
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10.2 Building a knowledge-based system

We see three main ways in which a company could turn internal knowledge into
a knowledge-base system: they could develop the entire application in-house,
they could hire a consultant to help create the KB, or they could outsource the
complete development of the tool to an external company. We will now briefly
describe each possibility’s pros and cons, followed by a closer look at one of the
specific options.

In-house development. Developing a knowledge-based system in-house allows
a company to have complete freedom over its design, use and capabilities.
However, this also means that they have to bear the full burden of KB creation,
a task which is not straightforward. It is likely in this case that one of the
company’s employees should be trained in knowledge formalization, which is
a lengthy and thereby expensive process requiring a lot of experience (see
Chapter 8). To help in this regard, we have developed online resources such as
IDP-Z3 by Example1, an interactive IDP-Z3 tutorial website, and the cDMN
documentation pages2, which go in great detail on how to use DMN, cDMN
and pDMN. Though always having a knowledge expert at your disposal has
obvious advantages, such as being able to quickly update knowledge bases if
needed, this option is most likely only worth it if the company wants to develop
multiple knowledge-based tools for in-house use.

Outsourcing the KB creation. Another possibility is to develop a tool
internally for the most part, but to outsource the creation of the KB3. For
instance, a company could hire a knowledge expert as a consultant, who develops
the KB together with domain experts by way of Joint Interactive Modelling.
In this way, the company still has complete control over the resulting tool
with regards to functionality, UI, and others, without requiring an in-house
knowledge expert. One downside of this approach is that this external person
might not be well-versed in the problem domain, and might therefore require
some time to fully understand it. Additionally, each time the company wants
to make drastic changes to the KB, they will have to hire the consultant again.

Outsourcing the entire tool. The third approach to acquire a knowledge-based
tool is by outsourcing its development entirely. In this way, the company does
not need to be concerned about the technical aspects of its development, as long

1https://interactive-idp.gitlab.io/
2www.cdmn.be
3This is possible thanks to the modular nature of KB systems.

https://interactive-idp.gitlab.io/
www.cdmn.be
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as the delivered product fits the bill. Though it is the costliest option of the
three, it is most likely ideal for organisations that do not consider developing
IT applications as their core business.

10.2.1 Valorisation plan

To complete our section on the economic valorisation of knowledge-based
systems, we will now describe the third possibility in more detail. We believe
that this approach to development can offer the most value to the largest
number of companies. Instead of describing this approach from the viewpoint
of the company however, we will describe it from the viewpoint of the external
knowledge expert, “as if we ourselves wanted to start such a service”.

What is involved in the valorisation? We would offer a service to build
knowledge-based applications for companies, in which we:

1. capture their expert knowledge in a user-friendly formalism, through Joint
Interactive Modelling;

2. build a knowledge-based tool based on the knowledge (either using the IC
or by designing a custom interface);

3. train their staff on how to interpret and maintain the knowledge;

4. possibly offer support when needed.

This approach has already proven effective in use cases in the past4. The
main difference is that we would like to build “finished products”, instead of
prototypes.

At the same time, we would maintain and extend our toolstack: cDMN solver,
pDMN solver, DMN-IDP, FM-IDP, and others.

Target group. We believe that there is a sufficiently large market for such
services, as throughout the PhD we have already been contacted multiple times
by interested parties. For example, companies have reached out to us for the
following.

• Build full-fledged chat bots based on (c)DMN models.
4See Adhesive Selector (Chapter 7), but also [3, 4, 6, 45, 48].
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• Use pDMN to model Bayesian belief networks in a user-friendly manner,
to assist legal experts

• Build ASP support for the cDMN solver, to model planning problems.

• Use cDMN to model Dutch government regulations, to increase
explainability and transparency.

• Develop software to verify architectural designs w.r.t. building codes based
on (c)DMN and IDP-Z3.

• Construct a KB-based tool to support the design of custom kitchen
cabinets.

• Evaluate analytics data using cDMN models.

• . . .

Moreover, as the graph in Figure 10.1 shows, our website detailing information
on DMN-IDP(y), cDMN and pDMN has a rising number of pageviews, indicating
interest in the projects. Based on this information, we see the most potential in
two specific types of applications: support systems for design/configuration and
decision process management.

Design/configuration problems, such as the Adhesive Selector and the component
design problem of [4], are ubiquitous in industry. We believe that we have an
excellent set of tools for modelling such problems, by way of cDMN and Feature
Modelling, and an equally excellent set of tools for solving them, by way of
IDP-Z3 and the IC. One challenge, however, is that companies are sometimes
unaware that there exists tooling to support their staff in this process, which
might make it more difficult to find new projects.

Decision process management is one of the rising trends in industry, and is by
some even being called “the new AI” [21]. Here too, we belief that we have
a unique and attractive toolset to offer. Firstly, we could assist companies
without any prior decision intelligence experience with setting up DMN, cDMN
or pDMN models, and equip them with proper tooling. Secondly, companies
that already use decision intelligence can plug in their DMN models into our
tools and get the added functionality offered by our tools without any extra
effort. Thirdly, if those companies bump into the limits of DMN for their
purposes, they can be further helped by transitioning to cDMN or pDMN.

Validation. As mentioned earlier, the approach of IDP-Z3 and the IC has
been successfully applied to a number of use cases in the past. Moreover, with
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Figure 10.1: The pageviews for the cDMN website (www.cdmn.be)

IDP-Z3 already running in production at one of the global leading financial
institutions [86], we are more confident than ever on IDP-Z3’s usefulness.
Similarly, as they are tried-and-tested industry standards, DMN and feature
modelling should both be ready for use in production.

For cDMN and pDMN on the other hand, we do not have such extensive use
cases yet. While we are convinced that they are already effective in a multitude
of real-life applications, we would require to build more concrete prototypes to
be sure. However, both of these languages are still quite young, and we can
change aspects of them (such as adding new operators) when we feel it would
be beneficial.

Intellectual property rights / freedom to operate. We will now give a brief
overview of the required software for this valorization and their commercial
licenses. In total, we encounter two license types: MIT, and LGPLv3. The
former license indicates that we may use the software as we please, even in
commercial applications. Software with the latter license may also be used
commercially, as long as we publicize any changes we make to it.

• IDP-Z3, DTAI, LGPLv3.

www.cdmn.be
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• Z3, Microsoft Corp., MIT.

• Interactive Consultant, DTAI, LGPLv3.

• DMN-IDP, DTAI, LGPLv3.

• cDMN solver, DTAI, LGPLv3.

• FM-IDP, DTAI, LGPLv3.

10.3 Societal Benefit

Besides economic benefit, we believe that the output of this thesis can also
have great societal benefits. Indeed, as our work on FOLL-E has shown, our
technology stack could help prepare an entire generation of students on the ever-
growing digitization of the workplace. To this end, we would like to continue
development on FOLL-E by, among other things, expanding on the exercises
that it offers and experimenting with different novel approaches.

Moreover, we would would like to make it broadly accessible to schools and
other organizations that are interested in sharpening the computational thinking
skills of children. We believe FOLL-E offers an engaging mix of interactivity,
fun, and high didactic potential. FOLL-E’s main social value is sharpening
the reasoning skills of the next generation: critical thinking and reasoning are
becoming evermore important, and we feel FOLL-E could be a great asset in
the toolkit of many organisations to help children develop these competences.
Therefore, we do not want to sell it as a product, but instead we want to launch
an open-source building kit.

The kit would include building instructions, open source code, and a complete
bill of materials, to be published online for free. In this way, anyone with access
to the materials and a laser cutter (e.g., through a Makerspace) will be able to
construct their own FOLL-E set-ups. By making it open-source, FOLL-E will
be broadly accessible: the total cost of a FOLL-E box is about €70, making it
much cheaper than most other tools for computational thinking. For people
that do not have access to a Makerspace or that do not want to spend time
building, we can also provide puzzle pieces or fully pre-built boxes at a slight
extra cost.

We feel that there are many organisations worldwide that could benefit from
a tool such as FOLL-E. Schools are increasingly focussing on their STEM
curriculum, and FOLL-E could form a fun introduction to logic. Organisations
teaching programming courses to K-12 (such as CoderDojo) can switch up
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imperative programming with logic, while still keeping the children entertained.
Universities can build their own FOLL-E set-ups to raise awareness about the
importance of logic through workshops, similar to what we do at KU Leuven.
In other words: there are many possibilities.

As of right now, FOLL-E has already been tested in multiple events: two
“Children University” events and, three STEM workshops on our campus, and
five workshops at primary schools throughout the country. By way of these
events, FOLL-E has already proven itself as being an enjoyable, captivating
and intuitive tool for children. While the initial results w.r.t. increasing the
children’s logical thinking were not significant (see Chapter 9), the test was
flawed in its methodology. To rectify this, we are in active collaboration with
pedagogical researchers to perform more thorough tests, and expect the results
to be published by July of 2024.





Chapter 11

Conclusion

The research goal of this thesis was to investigate how to effectively simplify
the KB creation process for domain experts. The main motivation for this goal
is that, while knowledge-based AI systems offer many potential benefits, the
knowledge acquisition bottleneck remains a hurdle in their practical application.
Though the methodology of Joint Interactive Modelling is already a big step
forwards, there is quite a lot more ground to cover to support the process. We
will now conclude our work towards this goal by briefly discussing each chapter,
followed by a wrap-up and a list of potential future work.

Throughout this PhD, we have looked into different ways to simplify the
modelling process. Our main approach was to look into alternative formalisms
for knowledge representation. While the standard formalism for modelling
knowledge in IDP-Z3, FO(·), is very expressive, it is ill-suited for non-AI experts
due to its highly complex nature. At the same time, we wanted to avoid
reinventing the wheel by making up our own formalism. Instead, we looked at
two existing industry standards and evaluated them on their KR potential. We
also created two extensions of such an existing standard to further improve on
their expressiveness. Moreover, we also worked on other aspects of the joint
interactive modelling approach, such as a tool for verification, and performed
two interviews to gauge the opinions of experts.

In Chapter 2, we looked into using the Decision Model and Notation standard
for KRR. DMN is widely used to represent (deterministic) decision processes,
and aims to be as user-friendly as possible so that anyone involved in the
decision process (business experts, IT staff, ...) can play an active role in
modelling. While DMN models are intended to be evaluated from the bottom
to the top, we showed that the knowledge inside the models can actually be put
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to many more uses. Indeed, by supporting other reasoning mechanisms such
as reasoning on partial information, evaluating sub-decisions and “reasoning
backwards”, DMN models can serve as the basis for complex decision support
software. We build two tools to support this approach: an integration of DMN
and IDP-Z3’s Interactive Consultant interface, and an IDP-Z3-based API for a
DMN reasoning engine. To demonstrate the viability of DMN for KR, we have
used this latter tool to build a chat bot to interact with DMN models. Based
on these findings, we conclude that DMN is a viable and user-friendly option to
build KR tools based on decision logic.

One downside of DMN is its relatively low expressiveness, which severely limits
its number of potential applications. To overcome this, Chapter 3 introduces an
extension of DMN called Constraint Decision Model and Notation (cDMN). This
new notation enhances the expressiveness of the original by introducing concepts
such as constraint tables, n-ary predicates and functions, quantification, and
more. At the same time, by holding on to DMN’s tabular notation, it aims to
maintain the intuitive nature of the original formalism. Through implementing
and comparing decision management challenges, we have shown that cDMN is
effective at modelling more types of problems, and that in general it results in
more compact solutions. These results suggest that cDMN is indeed typically
quite readable and maintainable.

Another type of problem that is frequently encountered in real-life problems is
probabilistic reasoning. While DMN’s deterministic nature is one of its main
advantages, there are still cases in which it is useful to include uncertainties.
To this end, Chapter 4 presents a probabilistic extension of DMN, called
Probabilistic Decision Model and Notation (pDMN). pDMN extends DMN
with probabilities, predicates, quantification, and a new hit policy to represent
annotated disjunctions. We demonstrate pDMN by implementing classic PLP
examples, which we feel result in more user-friendly models.

The second industry standard that we have looked at in this work is feature
modelling, a notation for modelling a product’s variability. As it models
variability, it actually lends itself excellently towards modelling configuration
problems as well, such as the design of industrial components. Yet, when looking
at the state-of-the-art, there is not much research on using this formalism in this
way. In Chapter 5, we investigate this discrepancy and find that this is due to
feature modelling’s inability to express background knowledge. To overcome this,
we present the idea of combining feature models with background knowledge
in (propositional) FO(·), allowing a modeller to, e.g., express environmental
knowledge. By integrating a feature modelling tool in the Interactive Consultant,
we demonstrate that our approach is indeed capable of modelling complex
configuration problems while maintaining a user-friendly feature model as basis.
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To further support the Joint Interactive Modelling approach, in which frequent
verification and validation plays a big role, Chapter 6 describes a new technique
for the verification of DMN tables. Instead of verifying tables in isolation, our
verification method is context-aware: it always verifies a table within the context
of the other tables and user-defined background knowledge. As demonstrated
by a comparison to the other state-of-the-art techniques, our approach results
in a more thorough verification. Our context-aware verification has also been
integrated into our DMN-IDP tool, making it accessible to all.

Throughout this PhD, we have collaborated with the Flanders Make Joining
Materials Lab on a use case to build a decision support tool for adhesive selection.
This use case proved to be an excellent opportunity to test our approaches, as is
described in Chapter 7. To extract the adhesive knowledge, we have performed
multiple Joint Interactive Modelling workshops with adhesive experts, using
a combination of DMN and cDMN as base notations. Through qualitative
interviews, we have gained a better view on the opinions of the domain experts
on our knowledge-based approach. The experts appreciate both the interactive
and explainable nature of the tool, and the fact that they can see, interpret
and possible update the KB themselves. They have also expressed that the
current interface, a slightly adapted version of the IC, is rather unorganized
and somewhat unintuitive. This output of the interviews will be used to guide
further work on our approaches. Overall, everyone involved in the project is
very positive about the progress thus far.

In Chapter 8, we presented the results of four qualitative interviews in which we
asked a modelling expert about their modelling experiences. Here, the main goal
was to elucidate the modelling intuitions and instincts of experts, and to discuss
concepts such as the user-friendliness of formalisms. Based on the interviews,
we discussed five main themes: expressiveness, modeller, naturalness, tooling,
and user-friendliness. By among others discussing FO(·)’s user-friendliness,
indicating the main design focusses of modellers and describing the crucial role
of tooling, the output of this interview is a valuable source of information to
guide future research w.r.t. modelling formalisms.

Lastly, we presented an “extreme” version of a user-friendly formalism in
Chapter 9 for teaching FOL to children aged 8-14. While FOL plays an
important role in fields such as CS, mathematics and AI, there is little to no
research around teaching it to children. To address this gap, we created FOLL-E,
a fun and engaging environment in which children can freely experiment with
FOL formulas by expressing knowledge on robot designs. Through multiple
workshops with children, we have evaluated FOLL-E in a real-life setting and
found that the children enjoy their experience, stating that it is intuitive and
inviting.
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To conclude the thesis, simplifying the KB creation process for domain experts
is a non-trivial task, due to a few reasons. Firstly, domain experts come in
many shapes and forms, each with different backgrounds and experiences. It is
possible that what is considered user-friendly for one, might be very difficult
to use for the other and vice versa. Secondly, when looking into alternative
formalisms, it is difficult to define or quantise terms such as “user-friendliness”,
“readability” and “easy to write”, as they are ambiguous and heavily depend
on the people involved. Thirdly, besides the formalism, there are many more
aspects of the modelling process to take into consideration, such as the available
tooling and the nature of the knowledge. By using tried and tested notations
such as DMN and feature modelling for KR, we know up-front that they are
considered user-friendly. Moreover, even if they are not sufficiently expressive
for some applications, they still form an excellent foundation to build off when
developing extensions. However, when we are looking into new user-friendly
formalisms for KR, we should also keep other factors in mind such as the tooling
available.

This thesis has given a lot of food for thought about future research directions.
For instance, future work could focus on quantifying terms such as “readability”
and “user-friendliness”, by performing studies on domain experts. Another
direction consists of expanding the tooling for the formalisms discussed in
this work: for instance, they could build a structured editor for cDMN or
examine verification techniques for feature modelling. Lastly, it is worth
investigating if other AI techniques such as machine learning could play a
role in modelling knowledge, by for example automatically building KBs based
on positive examples or by using large language models to generate FOL.



Appendix A

Software Overview

This appendix contains an overview of all the relevant software which we
developed or contributed to in the course of this thesis. Fig. A.1 shows a
graphical diagram containing the relations between these software projects.
Accompanying it, Table A.1 contains references to online resources for each
piece of software.
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Figure A.1: Graphical overview of all software relevant to this thesis
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Table A.1: Detailed list of the software relevant to this thesis.

https://IDP-Z3.be
https://gitlab.com/krr/IDP-Z3
https://www.idp-z3.be/Interactive-Consultant/
https://gitlab.com/krr/IDP-Z3
https://www.cdmn.be
https://gitlab.com/EAVISE/cdmn/cdmn-solver
https://gitlab.com/EAVISE/cdmn/DMN-IDP
https://gitlab.com/EAVISE/cdmn/DMN-IDP
https://gitlab.com/EAVISE/cdmn/pdmn
https://gitlab.com/EAVISE/featuremodel/feature-model-IDP
https://FOLL-E.com
https://gitlab.com/Vadevesi/foll-e




Appendix B

Adhesive Selector Codes

This appendix contains a more detailed description of the Adhesive Selector
interview codes presented in Chapter 7. Table B.1 shows an overview of each
code and the interviews in which they appeared. Each code is also explained in
our “code book”, included in Table B.2.
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Table B.1: Discovered codes per participant, and the data saturation.

Code 1 2 3 4
Cluttered Interface ✓ ✓ ✓ ✓
Interactive Counter ✓ ✓ ✓
Time Gain ✓ ✓ ✓ ✓
Avoiding Mistakes ✓
Playing Around ✓ ✓
More Confident ✓ ✓ ✓
Understandable ✓
Trust in the System ✓ ✓ ✓ ✓
Verification of the Result ✓ ✓ ✓ ✓
Adequate Performance ✓ ✓ ✓ ✓
Broader Scope ✓ ✓ ✓
Understanding Knowledge ✓ ✓
Teaching Tool ✓ ✓ ✓
Explainability ✓ ✓ ✓
Difficult Explanations ✓ ✓ ✓ ✓
Extended DB Required ✓ ✓
Select Specific Adhesives ✓ ✓
Help in Design ✓
Expert in the Loop ✓ ✓ ✓
Interactivity ✓ ✓
Relevancy ✓
More Detail ✓ ✓ ✓
User-added Knowledge ✓
Flexibility ✓
Immediate Feedback ✓
Central Place for Knowledge ✓

Total codes 15 16 19 13
Data saturation 58% 88% 96% 100%



ADHESIVE SELECTOR CODES 181

Table B.2: A code book elaborating on the meaning of each code of the interviews
for the Adhesive Selector.

Code Explanation

Cluttered Interface The interface’s structure seems chaotic.
Interactive Counter The counter denoting the number of suitable adhesives.
Time Gain Experts can more efficiently select an adhesive.
Avoiding Mistakes The tool prevents making mistakes.

Playing Around Interacting with the knowledge allows the expert to
“play around” with it.

More Confident The experts are more sure of their selection using the
tool.

Understandable The interface presents information in a sufficiently
understandable way.

Trust in the System The experts trust the choices of the system.

Verification of the Result The resulting short-list of adhesives will always need to
be verified.

Adequate Performance The loading time of the tool is within reason.
Broader Scope The experts discover more adhesives.
Understanding Knowledge The tool helps understand the knowledge.

Teaching Tool The tool is well-suited for teaching newer members of
the lab.

Explainability Explainability is an important factor.
Difficult Explanations The automatically generated explanations are difficult.
Extended DB Required More adhesives should be added to the system.

Select Specific Adhesives The AS allows selecting specific adhesives, whereas the
other tools only select families.

Help in Design The tool can also play a role in joint design.
Expert in the Loop An expert is always required to stay in the loop.
Interactivity Interactivity is a crucial aspect of the tool.

Relevancy Detecting which parameters are still relevant aids in
selecting adhesives.

More Detail The tool is more detailed than any other in terms of
possible parameters.

User-added Knowledge The experts would like to add their own knowledge to
the system.

Flexibility The tool adapts well to the expert’s way of working.

Immediate Feedback The experts appreciate that the interface updates
automatically.

Central Place for Knowledge All knowledge for adhesive selection is stored in
one location.





Appendix C

Modelling Interview Appendix

This appendix contains supplementary information for Chapter 8. Section C.1
contains the document that was sent out to the modelling experts, consisting of
a short introduction for the interview and four problem descriptions. Section C.2
discusses some of the implementations made by the expert modellers in more
detail by comparing them and pointing out interesting differences. Section C.3
contains an overview of all the codes discovered in the interviews.

C.1 Qualitative Expert interview: use cases

As part of a qualitative study into modelling formalisms, this document details
four small dummy use cases. You can consider these descriptions “as if given by
a domain expert with the goal of building an interactive knowledge-based tool”,
and you should implement them in the way you feel fits best w.r.t. formalism
and design focus. Afterwards, we will hold an interview to attempt “extracting”
your reasoning when modelling.

C.1.1 Concrete Selector

A construction consultancy company is specialised in finding the
best type of concrete for a job. Selecting concrete is done on the
basis of three parameters: strength, highest working temperature,
and maximum viscosity. The selection typically goes as follows: the
company has a range of “standard mixes’ ’ for concrete (c1 through
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c3), for which the values of the above three parameters are mostly
known. These standard mixes can be further tweaked to meet
specific needs, like adding a bit less water to decrease viscosity at
the cost of some strength.
As these tweaked mixes are empirically validated, the experts do
not always know up-front what their parameter values will be. So,
they take the following approach: if a parameter of a specific mix is
unknown, assume the parameter value of the default mix on which
it is based as an approximation. If that value is also unknown, then
do not apply any constraints that would exclude the mix.

Mix Strength High_T Max_Vis
c1 50 75 30
c2 60 85 ??
c3 80 ?? 25

Mix Strength High_T Max_Vis
c1.1 55 73 30
c1.2 60 65 ??
c1.3 47 ?? 20
c2.1 ?? 95 12
c2.2 65 85 ??
c3.1 ?? ?? 18
c3.2 90 ?? ??
c3.3 75 100 ??

C.1.2 Phone Configuration

A producer of phones builds custom, personalized phones for their
customers. To make this design process more straightforward, they
employ a modular design: phones consist of multiple components,
which can require or exclude others. All phones must include the
call module, and must also contain a screen. This screen is one of
three types: it can be basic, colour, or high resolution. The phone
may also optionally contain a GPS module, but only if the screen is
not basic. Moreover, the phone can also support two types of media:
a camera, and an MP3 player (possibly at the same time). There are
no special requirements for the MP3 player. However, the camera
may only be selected if the screen supports a high resolution.
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C.1.3 Vacation Days

The number of vacation days depends on age and years of service.
Every employee receives at least 22 days. Additional days are
provided according to the following criteria:

1. Only employees younger than 18 or at least 60 years, or
employees with at least 30 years of service will receive 5 days.

2. Employees with at least 30 years of service and also employees
of age 60 or more, receive 3 extra days, on top of possible
additional days already given.

3. If an employee has at least 15 but less than 30 years of service,
2 extra days are given. These 2 days are also provided for
employees of age 45 or more. These 2 extra days can not be
combined with the 5 extra days.

C.1.4 Planning problem

To ensure that a person capable of applying first-aid is always present
in a school, a weekly permanence schedule is made. Days are split
into a morning segment and an afternoon segment. For each segment,
someone must be assigned as first-aid officer, with another person
being assigned back-up. In total, there are five people that can be
assigned permanence: William, Julie, Alex, Emma, Sophie. Each
of these people have their own availabilities. A planning must be
made according to these rules:

1. A person cannot be assigned both first-aid and back-up at the
same time.

2. If a person is not available, they cannot be scheduled.
3. Emma must be assigned first-aid on Wednesday afternoon.
4. William must be back-up on Mondag morning.
5. Sophie may only be planned as back-up.
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C.2 Expert Models

C.2.1 Concrete Selection

In the implementations that we received for the concrete selection problem,
two stand out. Listing C.2.1 shows an implementation by M1 which uses FO(·)
definitions, and Listing C.2.2 shows an implementation using IDP’s CNL by
M2. Both modellers motivated their design choice using the same argument:
they wanted to stick as closely as possible to the problem descriptions to ensure
naturalness (see Chapter 8.4.3).

M1’s reasoning for definitions was that the problem description, in their opinion,
defined the assumed values for strength, temperature, and viscosity. Note that
besides using definitions, they also included some CNL-like statements in the
form of “if-then-else“ operators – combined, these two lead to a compact and
relatively readable knowledge base. One design choice that seems a bit “off”
however is their usage of predicates (such as known_strength : Concrete ×
Num → B) instead of functions (known_strength : Concrete → Num).

Listing C.2.1: FO(·) solution by M1
(structure left out to reduce clutter)

vocabulary {
    type Concrete := {c1,c2,c3,c1_1,c1_2,c1_3,c2_1,c2_2,c2_3,c3_1,c3_2,c3_3}
    type Num := {0..100}

    Tweaked : Concrete → B
    Base : Concrete → B
    base : Tweaked → Base

    known_strength : Concrete × Num → B
    known_temp : Concrete × Num → B
    known_vis : Concrete × Num → B

    assumed_strength : Tweaked × Num → B
    assumed_temp : Tweaked × Num → B
    assumed_vis : Tweaked × Num → B

    strength : () → Int
    temp : () → Int
    vis : () → Int
}

theory {
    {
        ∀c in Concrete, x in Num: assumed_strength(c,x) ← if known_strength(c,x) then 

known_strength(c,x) else known_strength(base(c),x).
    }
    {
        ∀c in Concrete, x in Num: assumed_temp(c,x) ← if known_temp(c,x) then known_temp(c,

x) else known_temp(base(c),x).
    }
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    {
        ∀c in Concrete, x in Num: assumed_vis(c,x) ← if known_vis(c,x) then known_vis(c,x)

 else known_vis(base(c),x).
    }
}

In contrast, Modeller 2’s entire theory consists of nested “if-then-else” CNL
statements. Here, is enumerated is a special operator that evaluates to true if
and only if an applied symbol is interpreted in the structure, i.e., the structure of
the knowledge base contains an entry for that symbol applied to its arguments.
As an example, strengthOf(mix()) is true when the structure contains a strength
for the value of mix().

When looking at the vocabulary, we can see that M2 used a special operator for
type Mix. Indeed, this is a constructor type, which allows a modeller to build
types using other types. Here, Mix represents every possible combination of
Nat and StandardMix, thus combining both standard and modified concretes in
one type. In general, this will make the theory more compact, and thus more
maintainable. At the same time, it will also make it more complex, thereby
showcasing a possible trade-off between expressiveness and user-friendliness.

Listing C.2.2: Controlled Natural Language solution by M2
(structure left out to reduce clutter)

vocabulary V {
    type Nat := {0..3}
    type StandardMix := {C1, C2, C3}
    type Mix := constructed from {c(standardOf:StandardMix, Nat)}

    strengthOf, temperatureOf, viscosityOf : Mix → Int
    strength, temperature, viscosity : () → Int // requested
    mix : () → Mix // choice
}

theory T:V {
    if strengthOf(mix()) is enumerated
    then strength() > strengthOf(mix())
    else (if strengthOf(c(standardOf(mix()),0)) is enumerated
        then strength() > strengthOf(c(standardOf(mix()),0))
        else true).

    if temperatureOf(mix()) is enumerated
    then temperature() > temperatureOf(mix())
    else (if temperatureOf(c(standardOf(mix()),0)) is enumerated
        then temperature() > temperatureOf(c(standardOf(mix()),0))
        else true).

    if viscosityOf(mix()) is enumerated
    then viscosity() > viscosityOf(mix())
    else (if viscosityOf(c(standardOf(mix()),0)) is enumerated
        then viscosity() > viscosityOf(c(standardOf(mix()),0))
        else true).

}
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C.2.2 Phone Configuration

For the phone configuration problem, the formalism choice was evenly split: we
received two FO(·) implementations, and two feature model implementations.
Below, in Listing C.2.3, M4’s solution using a feature model is shown. As
can be seen, using a feature model for this problem leads to quite an intuitive
representation of a phone, by giving a visual overview of what components are
possible. Together with a small theory block, it fully encapsulates the problem
domain1.

Listing C.2.3: Feature Modelling solution by M4

 theory {
    GPS() ⇒ ¬Basic().
    Camera() ⇒ High_Res().
}

Comparing the above implementation to one in FO(·) (Listing C.2.4) shows
off another major advantage of feature models: creating an ontology for the
problem (= deciding how to represent the domain) is mostly done implicitly
in feature models, whereas FO(·) always requires an explicit vocabulary. This
takes a huge burden away from the modeller, and reduces the potential of errors.

At the same time, feature models are more prone to exploding in size when
the problem domain is larger. Imagine, for instance, that the phone could be
configured with 100 different types of media: this would require adding 100
children to the Media node! It goes without saying that this would negatively
impact readability, maintainability, and general usability of the feature model.

1Note however that the modeller made a slight mistake: Screen’s children should be in an
“alternative” relation instead of an “or” relation.
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By contrast, in the FO(·) shown below, it would suffice to simply expand the
interpretation of the Component type.

Listing C.2.4: FO(·) solution by M2

vocabulary V {
    type Component := {Call, Screen, GPS, Camera, MP3}
    type ScreenType := {Basic, Colour, HighRes}
    has : Component → B
    screenType: () → ScreenType
}

theory T:V {
    has(Call).
    has(Screen).
    screenType() ̸= Basic ⇐ has(GPS).
    screenType() = HighRes ⇐ has(Camera).
}
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C.2.3 Vacation Days

For the vacation days problem, we have received one cDMN model and three
FO(·) models. The cDMN model is as follows:

Listing C.2.5: cDMN solution by M3

Type
Name DataType Possible Values

Employee String person_a

Function
Name Datatype

vacation days of Employee Int
age of Employee Int

service years of Employee Int

Vacation days
C+ Employee called e age of e service years of e vacation days of e

1 - - - 22
2 - < 18 - 5
3 - ≥ 60 - 5
4 - [18, 60) ≥ 30 5
5 - - ≥ 30 3
6 - < 60 < 30 3
7 - < 45 [15, 30) 2
8 - [45, 60) < 30 2

The decision table is relatively easy to interpret. The C+ hit policy means that
it sums the output value of each applicable row, with every criterion modelled
in separate rows:

• Criterion 1 (5 extra days) is split over rows 2-4

• Criterion 2 (3 extra days) is split over rows 5-6

• Criterion 3 (2 extra days) is split over rows 7-8

The first rule of the table represents the default number of vacation days that
every employee gets, regardless of the other criteria. This makes the decision
table intuitive to interpret, as there is a direct connection between specification
and model.
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One downside of this model is that the modelling for criterion 3 does not
correspond 100% to the original rule, because of the constraint that “the 2
extra days cannot be combined with the extra 5 days”. To see this difference,
consider row 8: while the description states that “these 2 days are also provided
for employees of age 45 or more”, the row also contains an explicit upper bound
of 60 years, to ensure it does not overlap with row 3. This can be solved
by splitting the table in three separate tables, as demonstrated in the cDMN
documentation2.

In the FO(·) solution by M1 (Listing C.2.6), the criteria are encoded in a similar
fashion to the C+ table. Here, the vacation days are calculated as the sum of
multiple if-then-else statements, with each if-then-else representing one criterion.
Note that this representation does not suffer from the aforementioned issue,
as the modeller cleverly nested criterion 3 in criterion 1. In other words, the
criterion for the two extra days is only considered if they are explicitly ineligible
for the extra five days.

Listing C.2.6: FO(·) solution by M1

vocabulary {
    age : () → Int
    service_years : () → Int
    vacation_days : () → Int
}

theory {
    vacation_days() = 22
    + (if age() <18 ∨ age() ≥ 60 ∨ service_years() ≥ 30 then 5 else
       if age() ≥ 45 ∨ service_years() ≥ 15 then 2 else 0)
    + (if age() ≥60 ∨ service_years() ≥ 30 then 3 else 0).
}

2https://cdmn.readthedocs.io/en/stable/Examples/vacation_days.html

https://cdmn.readthedocs.io/en/stable/Examples/vacation_days.html
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C.2.4 Planning Problem

For the fourth problem, all modellers chose to use FO(·). While their solutions
are roughly the same in many ways, we did see three very different ways to
represent the time points of the planning.

• M2 created a type Slot, constructed from types Day and Segment (Listing
C.2.7)

• M3 created one type days, containing elements to represent both day and
day half (Listing C.2.8)

• M4 created Days and Segment, and uses both of them together in the
other symbol declarations (Listing C.2.9)

This difference can be seen in the listings below. To save on space, we only
include two rules in the theories, namely “If a person is not available, they
cannot be scheduled” and “Emma must be assigned first-aid on Wednesday
afternoon”. These shorter theories are already good examples of how there are
typically multiple ways to model a problem, each with their own pros and cons:

1. Constructed type (M2, Listing C.2.7)

Pros. If a new segment is added, the formulas stay the same.
Requires only one quantification to reason over time points.

Cons. Arguably more complex to declare and understand for non-experts.
Less natural when describing formulas over specific time points.

2. Single type (M3, Listing C.2.8)

Pro: Very straightforward and easy to understand.
Requires only one quantification to reason over time points.

Con: Less natural when distinction between day and segment is required.
If a new segment is added, the entire days type needs updating.

3. Separate Day and Segment (M4, Listing C.2.9)

Pro: Easy to use and flexible.
Relatively natural.

Con: Quantifying over segments requires two quantifications.
Other symbol declarations require two types as domain instead of
one.
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Knowing the impact of each design decision and which trade-offs to make
requires intuition, which can only truly be gained through experience. This
relates back to the Modeller theme (Chapter 8.4.2).

Listing C.2.7: partial FO(·) solution by M2

vocabulary V {
    type Day := {Mon, Tue, Wedn, Thurs, Fri, Sat, Sun}
    type Segment := {AM, PM}
    type Slot := constructed from {slot(Day, Segment)}
    type Person := {William, Julie, Alex, Emma, Sophie}

    availableOn : Person × Slot → B
    firstAid, backup: Slot → Person
}

theory T:V {
    ∀p in Person, ∀s in Slot: availableOn(p, s) ⇐ firstAid(s) = p ∨ 

backup(s) = p.
    firstAid(slot(Wedn, PM)) = Emma.
}

Listing C.2.8: partial FO(·) solution by M3

vocabulary {
    type person := {Emma, William, Sophie, Julie, Alex}
    type days := {MondayAM,  MondayPM, TuesdayAM, TuesdayPM, WednesdayAM

, WednesdayPM, ThursdayAM, ThursdayPM, FridayAM, FridayPM}
    FirstAid, Backup : (days) → person
    Available : (days × person) → B
}
theory {
    ∀p in person, d in days: ¬Available(d,p) ⇒ ¬(FirstAid(d) = p ∨ 

Backup(d) = p).
    FirstAid(WednesdayPM) = Emma.
}

Listing C.2.9: partial FO(·) solution by M4

vocabulary {
    type Person := {William, Julie, Alex, Emma, Sophie}
    type Days := {Monday, Tuesday, Wednesday, Thursday, Friday}
    type Segment := {Morning, Afternoon}
    first_aid: Days × Segment → Person
    back_up: Days × Segment → Person
    available: Person × Days × Segment → B
}
theory {
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    ∀p in Person, d in Days, s in Segment: (first_aid(d, s) = p ∨ 
back_up(d, s) = p) ⇒ available(p, d, s).

    first_aid(Wednesday, Afternoon) = Emma.
}
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C.3 Modelling Interview Codes

Table C.3: Discovered codes per expert modeller, and the data saturation.

Code M1 M2 M3 M4
KB closely aligned to NL ✓ ✓ ✓
Compactness ✓ ✓ ✓
Definitions ✓ ✓
Familiarity ✓ ✓ ✓
KISS ✓ ✓ ✓
Readability AI expert ✓ ✓ ✓
Readability domain expert ✓ ✓ ✓
No focus on efficiency ✓ ✓
Expressiveness <> user-friendliness ✓ ✓ ✓ ✓
Validation ✓ ✓ ✓
Verification ✓ ✓
Explainability ✓
Extensibility ✓
Maintainability ✓
Natural reading ✓
Simplicity ✓
Automatically to FO(·) ✓ ✓
Conservative notation ✓
Recognizable structure ✓ ✓
Clear separation in knowledge ✓ ✓
Structure in knowledge ✓ ✓
Low in syntax ✓ ✓
Visual ✓ ✓
Intuitive ✓
Defined scope of formalism ✓

Total codes 11 12 13 15
Data saturation 64% 88% 92% 100%
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Table C.4: A “code book” elaborating on the meaning of each code found during
the expert modeller interviews.

Code Explanation

KB closely aligned to NL The formalised knowledge corresponds clearly
to the original description.

Compactness The compactness of the representation.
Definitions Usage of logical definitions in the KB.
Familiarity The familiarity of an expert w.r.t. a formalism.
KISS Keep It Simple, Stupid
Readability AI expert How readable is the KB for AI experts?
Readability domain expert How readable is the KB for non-AI experts?
No focus on efficiency Efficient execution is not a modelling focus.
Expressiveness <> user-friendliness The expressiveness vs user-friendliness trade-off.
Validation Validation of the KB.
Verification Verification of the KB.
Explainability Explainability of the KB.
Extensibility Extensibility of the KB.
Maintainability Maintainability of the KB.
Natural reading The notation has a “natural” interpretation.
Simplicity Simplicity of the modelling process.

Automatically to FO(·) A notation can automatically be translated
into FO(·).

Conservative notation The notation does not change much.
Recognizable structure The notation uses a common structure.

Clear separation in knowledge The KB is separated into smaller parts,
each with their own role.

Structure in knowledge The KB is well-structured.
Low in syntax The formalism does not have much syntax.
Visual The formalism is visual in nature.
Intuitive The formalism is intuitive.

Defined scope of formalism The formalism was designed for one or more
specific type of problems.
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